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Summary
In this paper we use NLP techniques to solve a binary classification problem of determining the sentiment
of movie reviews from the IMDB Movie Database and Amazon product reviews. We find that, simpler
models such as logistic regression perform better on the test split, however, tree based models are more
generalizable on new data which the models were not trained on.
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1. Introduction

Single machines do not have enough power and resources
to perform computations on vast amounts of information.
A cluster, or group, of computers, pools the resources of
many machines together, giving us the ability to use all the
cumulative resources as if they were a single computer. [1]

Now, a group of machines alone is not powerful; you need a
framework to coordinate work across them. Spark does just
that, managing and coordinating the execution of tasks on
data across a cluster of computers. Spark is an open-source
distributed cluster computing framework. Distributed com-
puting generally refers to a computational job split across
a cluster of nodes. Each node is responsible for a set of op-
erations on a subset of the data. [1] In the end, the partial
results are combined together to obtain the final result.

A natural question might be: How do the nodes know
which task to run in what order? Are all nodes equal?
Which node is the user interacting the code is run? Most
distributed computational frameworks are organized into
a master-worker hierarchy. The master node is responsi-
ble for orchestrating the tasks across the cluster, and the
workers are performing the computations. The cluster of
machines that Spark will use to execute tasks is managed by
a cluster manager like Spark’s standalone cluster manager,
YARN, or Mesos. [1] We then submit Spark Applications to
these cluster managers, which will grant resources to our
application so that we can complete our work.

2. Terminology

There are few pieces of hardware which are crucial to un-
derstanding big data:

mailto:hathe098@uottawa.ca


MAT 4376X BIG DATA AND SENTIMENT CLASSIFICATION

Figure 1. When the CPU needs access to a particular memory
location, it first checks whether it is the cache. If it is, the content
can be retrieved very quickly (i.e., a cache hit). Otherwise, if the
location is not in the cache, the retrieval will be slow (cache
miss) [16].

2.1 Hardware
CPU is said to be the brains of a computer. The CPU func-
tions include performing mathematical calculations and
managing other components of the computer. The CPU
also can store small amounts of data inside itself in what
is referred to as registers. The registers store the data that
the CPU is performing a computation on at a given mo-
ment. The registers make computations more efficient: the
registers avoid sending data unnecessarily back and forth
between memory (RAM) and the CPU. [17]

Cache is defined as hardware or software used to tem-
porarily store data in a computing environment [4].

Random Access Memory (RAM) is essentially a machine’s
short-term memory. Although long term storage such as
hard disks and SSD is cheap and durable, its much slower
than RAM (or memory). Loading data from magnetic disks
can be two hundred times slower, and the solid-state drives
are fifteen times slower. [18] For example, processing hours
worth of tweets (∼4.3 GB) would take approximately 30
MS if the data is in memory. If the data needs to be loaded
from an SSD it will take about 0.5 seconds. Moreover, it
would take about 4 seconds if the data needs to be loaded
from an older magnetic hard drive [21].

Spark uses a cluster of servers connected by a network
of servers. Moving data across the network from one ma-
chine to another is the most common bottleneck in big data.
Network speeds depend on many factors such as internet
speed etc. However, on average, it takes about 20x longer to
process data when it needs to be downloaded from another
machine first [21]). For this reason, distributed systems try
to minimize moving data back and forth between nodes of
a cluster.

2.2 Storage Latency
Disk Oriented methods for memory storage are becoming
unwieldy: they do not scale elegantly to meet the needs of

big data [3].

In storage systems, latency refers to how long it takes for
a single data request to be processed and the correct data
found and accessed from the storage media [7].

Memory latency is the time differing between at which
the CPU issues a read or write command, and the time the
command is completed. This time is very short if the data is
in the L1 cache, but very long, relatively speaking if the data
is in external memory (SSD). The time it takes to complete
each step is called the step latency. With Big Data, most
latency is due to reading and writing data—not computa-
tion. Storage latency varies widely; it mainly depends on
the hardware being used. One of the main challenges in big
data analytics is minimizing storage costs while maximizing
speed [16].

In computer systems, the locality of reference refers to
the situation in which the computer tends to access the
same set of memory locations repetitively over a short time-
period [2]. Access locality refers to the ability of software to
make good use of the cache [16]. One can visualize mem-
ory as being broken down into pages. Software that uses
the same neighboring pages repeatedly (i.e., exhibits strong
locality of reference) is said to have good access locality.
Modern hardware is specifically designed to optimize and
speed up such software.

Spatial and Temporal locality are two types of locality
of reference. Spatial locality is defined as when storage
locations that are in nearby memory locations are accessed
or executed in a short time period. Temporal locality is
characterized as if a particular memory location is accessed
at a particular time; then, it is likely that the same location
will be reaccessed in a "short" time period.

Spatial and temporal locality describe two different char-
acteristics of how programs access data. However, there
are other additional types of locality of references, such as
branch locality and equidistant locality, which file storage
systems leverage to optimize speed. However, they are be-
yond the scope of this paper.

The following two examples make the abstract definitions
more concrete:
[Insert examples of Spatial and Temporal locality]

2.3 In Memory Processing
During in-memory computation, the data is kept in the ran-
dom access memory (RAM) instead of disk drives (such as
SSD) and is processed in parallel. Keeping data in mem-
ory improves the performance by orders of magnitudes.
Spark’s primary abstraction is RDD and can be cached by
the cache() or persist() command. When we use
the cache() method in Spark, all the RDDs are stored
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in memory (RAM). If the data can not fit in memory, it is
either stored on disk or recalculated. Therefore, when we
need data to analyze, it is already available on the go or
can easily be retrieved. This way, the data becomes highly
accessible. This reduces the time complexity of running
machine learning algorithms on the data by orders of mag-
nitude. [21]

2.4 MapReduce and It’s Limitations
MapReduce is a programming model for manipulating
large data sets [22]. It is usually composed of three steps:
Map, shuffle, Reduce. MapReduce works by first parti-
tioning a large dataset and distributing it across a cluster.
The data is analyzed and converted into a key-value pair
in the Map step [22]. In the shuffle step, the data is re-
distributed by the worker nodes. The key-value pairs are
shuffled so that all the keys are on the same machine. In
the reduce step, the worker nodes process each group of
output data, in parallel, and values with the same keys
are combined. [22] The limitations of MapReduce created
the need for Spark [15] . For operations such as Filter
and Joins, one might need to rewrite the jobs, which be-
comes complex due to the key-value pattern. This pattern
is required to be followed in Reducer and Mapper codes.
Furthermore, MapReduce is limited for iterative program
execution. Some algorithms, such as K-means, require data
to be processed iteratively to refine results. In addition to
that, MapReduce does not work well with large data on a
network. It cannot process a lot of data requiring shuffling
operations over the network efficiently. [15]

3. Framework For NLP Project

3.1 Use Cases for Spark
A considerable length of this paper has been dedicated to
highlighting the advantages of Spark. It should be made
clear that it need not always be used. Spark is meant for big
data sets that cannot fit into one computer or need to lever-
age multiple cores of a machine. If one is working with
smaller datasets, R and Python Anaconda environments
are almost always the better choices due to the sheer vari-
ety of open-source packages available. However, it should
be noted that ML libraries such as Scikit-learn are only
optimized for using single core processing. They do not
fully leverage the power of multi-core machines by default.
Other packages allow Scikit-learn algorithms to utilize mul-
tiple cores but can run into scale issues if the data becomes
too large. However, since Spark is designed to keep data
in memory, it is particularly useful for iterative algorithms
such as logistic regression or PageRank. Since these al-
gorithms calculate parameters by repeating computations
with slightly different parameters, over and over on the
same data stored in memory. [21]

3.2 How Spark Works
Spark Applications are composed of a driver and a set of
executors. The driver process executes the main() function.
It is deployed on a node in the cluster, and is responsible
for three things:

maintaining information about the Spark Application;
responding to a user’s program or input;
analyzing, distributing, and scheduling work across
the executors [1];

The driver process is absolutely essential—it’s the heart of
a Spark Application and maintains all relevant information
during the lifetime of the application. The executors are re-
sponsible for carrying out the computational workload that
the driver assigned them. This implies that each executor
is responsible for only two things:

executing code assigned to it by the driver [1];
reporting the state of the computation on that execu-
tor back to the driver node. [1];

3.3 TF-IDF
One way to mathematically measure how concentrated into
relatively few documents are occurrences of a given word is
using TF-IDF algorithm. The TF-IDF algorithm is the prod-
uct of two terms. The first part is the term frequency (TF)
of word t in the document d. Generally, we apply a log10
transformation to the count in order to "squash" the raw
frequency of the term. The intuition for the log transforma-
tion is that a word appearing appearing x number of times
is not x times more likely to be relevant to the meaning of
the document [11]. Furthermore, since we are applying a
logarithmic transformation to sparse vector we must add
one to ensure that we do not take log of zero. Thus

t ft,d = log10(count(t, d) + 1)

The second part is inverse document frequency (IDF). IDF
is defined by a fraction of the following two terms: N total
number of documents, and d ft the number of documents
in which term t occurs. Again, a log10 transformation is
applied to the fraction in order to normalize or "squash" the
raw fraction [11]. Thus,

wt,d = t ft,d × id ft

Hence the resulting definition of a TF-IDF weight value wt,d
for a word t in document d is

wt,d = t ft,d × id ft

Upon further inspection we can note that the TF-IDF
weighting algorithm has the following properties:

t has the highest weight when t occurs many times
within a small number of documents; [12]
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the weight of term t is offset when the t occurs fewer
times in a document, or occurs in many documents
(the whole corpus); [12]
lowest when the term t occurs virtually in all docu-
ments; [12]

We may view each document as a vector where each
component of the vector corresponds to each term in the dic-
tionary or corpus. The idea of creating vector embeddings
of words is to represent a word as a point in a multidimen-
sional "semantic space".

4. IMDB dataset

4.1 The Data set
The IMDB dataset was initially published in the paper, Learn-
ing Word Vectors for Sentiment Analysis, by Andrew L. Maas
et al. The dataset consists of 25,000 positive movie reviews
and 25,000 negative reviews. Our training set consisted of
12,500 positive reviews and 12,500 negative movie reviews.

Below is an example of one of the reviews in the train-
ing set, which gives an idea of what the data is like:

"Liked Stanley Iris very much. Acting was very good. Story
had a unique and interesting arrangement. The absence of
violence and sex was refreshing. Characters were very con-
vincing and felt like you could understand their feelings. Very
enjoyable movie."

We have no information on what date the review was posted,
who posted the review, or any other additional features.
This dataset contains the raw text of the review and the
review sentiment (positive or negative).

We cleaned and normalized the data by applying various
standard functions which, lowercased all words, removed
stop-words, punctuation, and symbols, etc.. (refer to IMDB
reviews.ipynb notebook for details)

We utilized Spark MLib to apply the TF-IDF weighting scheme,
which we discussed earlier in the paper to transform our
tokenized reviews into weighted vectors. These vectors
were the input to our machine learning models.

This paper employs six commonly used algorithms for classi-
fication: Logistic Regression, Decision tree, Random Forest,
Gradient-Boosted Trees, Support Vector Machine, and Naive
Bayes. Spark MLlib implements a simple distributed ver-
sion of stochastic gradient descent. Logistic regression algo-
rithms take as input a regularization parameter, along with
various parameters associated with stochastic gradient de-
scent, and support all three possible regularizations (none,
L1 or L2). Furthermore, Spark MLib allows for distributed
training for tree-based methods (Decision Trees, Random
Forrest, and Gradient-Boosted Trees) by implementing par-

titions data by rows, allowing distributed training with
millions or even billions of instances.

For more details on the distributed implementation of Spark
MLib: [https://spark.apache.org/docs/latest/mllib-linear-
methods.html](https://spark.apache.org/docs/latest/mllib-
linear-methods.html)

Our general hypothesis before we evaluated any models’
performance was: Although simple models such as decision
trees and logistic regression are great for their simplicity and
interpretation, they are more limited in their power to learn
complicated rules and scale to large data sets. Therefore, a
one-hundred tree random forest model or gradient-boosted
trees would likely perform better. This point of view was
based on a case study where logistic regression performance
was compared to SVM for sentiment classification [9].

4.2 Classification Metric
The ROC curve (receiver operator characteristic curve) is
a plot that displays the performance of a classification
model at all classification threshold (Machine Learning
Crash Course, Google). The curve has two parameters:
true-positive rate (TPR), which is the y-axis of the ROC
curve (also referred to as sensitivity), and false-positive
rate (FPR), which is the x-axis (also referred to as speci-
ficity).

The TPR tells us the proportion of positive reviews that
were correctly classified. The FPR tells us the proportion of
negative reviews that were incorrectly classified as positive
reviews. The goal of a good model is to maximize the TPR
and while minimizing the FPR.

The diagonal line represents where the TPR equals the
FPR. Any point on the diagonal line represents that the
number of correctly identified positive reviews is the same
as incorrectly classified negative reviews. To compare dif-
ferent classifiers, it can be convenient to summarize their
performance into a single score. The "Area under the ROC
curve" (AUC) takes the integral of the entire ROC curve
and measures the area under the curve. It is equivalent to
the probability that a randomly chosen positive instance is
ranked higher than a randomly chosen negative instance,
i.e. it is equivalent to the two-sample Wilcoxon rank-sum
statistic. [10]. However, it should be noted that there are
disadvantages to using AUC, because it does not account for
different misclassification costs arising from false-negatives
and false-positives [10].

4.3 Results
The training set which the six classifiers were trained on
consisted of 25,000 reviews (12,500 positive and 12,500
negative). The test set which the performance of the clas-
sifiers was evaluated on also consisted of 25,000 movie
reviews.
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Figure 2. This figure shows the performance of the classifies on
25,000 test set. Logistic regression had the highest AUC for
Features= 100, 200, 2000. The AUC for logistic regression was
0.659616, 0.707680, 0.824741. Decision trees had the lowest
(worst) AUC of 0.580980, 0.623407, 0.693225, respectively. For
features = 4000: linear SVM had the highest AUC of 0.853694,
and decision trees had the lowest AUC of 0.728151.

There are two exciting insights that we obtain from
the results(see Figure 2). (1) As the number of features
increases, all classification models’ performance increases
on the test set (2) Logistic regression, which is a "simpler"
model relative to random forest and gradient-boosted trees
perform significantly better. It should be noted at all the
models underwent cross-validation to ensure their respec-
tive hyper-parameters were optimized.

5. Amazon dataset

After seeing the results, a natural question one might ask
is if any of the above models would be good at predicting
sentiments of reviews that come from a completely differ-
ent dataset (or distribution). In the real-word, new data
is continually generated, and we might not be guaranteed
that the training set resembles the testing set. The next
experiment attempted to mimic that situation.

We test the models on a dataset of Amazon product re-
views. This data set was significantly different from the
IMDB dataset. The main difference is that the data set
contained reviews about a product on amazon instead of
movies. In other words, the distribution which generated
our training data set (IMDB reviews) is different from the
distribution which generated the new test set (Amazon Alex
Reviews). Therefore, ultimately, we test if sentiment classi-
fiers that perform the "best" in a train/test paradigms are
also the most robust classifiers when new data is introduced
from a different distribution.

The Amazon Alex dataset consisted of approximately 3000
customer text reviews. Although the dataset contained ad-
ditional features such as star ratings, date of review, variant,

Figure 3. This figure shows the performance of the classifies on
3000 reviews from Amazon. Random forest classier had the
highest AUC for Features= 100, 200, 2000, 4000. The AUC for
random forest was 0.580840, 0.581025, 0.682131, 0.684670.
Linear Support Vector Machine had the lowest (worst) AUC of
0.517603, 0.527168, 0.531929, 0.532542, respectively. For
features = 10000: Decision Tree had the highest AUC of
0.688453, and Linear Support Vector Machine had the lowest
AUC of 0.534772.

we completely ignored them. The data was obtained from
Kaggle Open Datasets. Below is an example of a review in
the data set, it gives an idea of what the the data is like:

"We love Alexa! We use her to play music, play radio through
iTunes, play podcasts through Anypod, and set reminders.
We listen to our flash briefing of news and weather every
morning. We rely on our custom lists. We like being able to
voice control the volume. We’re sure we’ll continue to find
new uses. Sometimes it’s a bit frustrating when Alexa doesn’t
understand what we’re saying."

We cleaned and normalized the data by applying various
standard functions which, lower casing all words, removing
stop-words, punctuation, and symbols, etc.. (refer to ’Alex
reviews.ipynb’ notebook for details)

Again, we utilized Spark MLib to apply the TF-IDF weight-
ing scheme, discussed earlier in the paper, to transform
our tokenized reviews into weighted vectors. These vectors
were then inputted to our machine learning models that
were created from IMDB reviews training data. The vectors’
dimensions were the same as the IMDB dataset (100, 200,
2000, 4000, 10000). The results indicate that Random For-
rest, Gradient-Boosted Trees, and Decision Trees performed
the best on new data(see Figure 3). Logistic regression,
linear SVM, and naive Bayes significantly dropped in per-
formance when tested on a data from a new distribution.
In essence, models that performed the worst on the IMDB
test set performed the best on the Amazon data set and vice
versa.
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6. Conclusion

From the bias-variance-trade off perspective, logistic regres-
sion, linear SVM, naive Bayes classifier had high variance.
Although these models performed very well on the test set
of the IMDB movie review data set, they do not generalize
well on data from a completely different dataset. On the
other hand, random forrest, gradient-boosted trees, and
decision trees were not the strongest classifier on the IMDB
movie review test set, but they generalized much better on
the Amazon product review dataset.

7. Future Directions for Research

A natural question to ask is what characteristics of tree-
based methods allowed them to perform better on the Ama-
zon data. Random forest and gradient-boosted trees are
known to perform well on large NLP datasets, but in our
experiment, the decision tree performed just as well. Fur-
thermore, in the next paper, we can use deep learning
models to see how well they can generalize. Lastly, in the
next paper, we will test if other word embedding algorithms
such as word2Vec or doc2Vec give improved results.
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