
Statistical Machine Learning
MAT 5314

Hanan Ather

Winter 2022

Contents

1 January 9, 2023 3
1.1 Introduction . 3
1.2 Supervised learning . 3
1.3 Empirical Risk Minimization . 3
1.4 Manifold learning . 4

2 January 11, 2023 6
2.1 OLS as ERM . 6
2.2 Mathematical formalization of linear regression 6
2.3 Linear Algebra facts . 6
2.4 Column Perspective . 7
2.5 Spectral decomposition . 7

3 January 16, 2023 9
3.1 Projection Prospective of OLS . 9
3.2 Occam’s razor approach . 9
3.3 Regularized Least Square . 9
3.4 Recursive Least Squares . 9

4 January 18, 2022 11
4.1 Linear Learning Algorithms . 11
4.2 Learning Algorithm . 11
4.3 Bayes Optimal . 11
4.4 Bias–variance tradeoff . 12

5 January 23, 2023 13
5.1 Linear Discriminant Analysis . 13

6 January 25, 2023 14
6.1 LDA continued . 14
6.2 PCA . 15

7 January 30, 2023 16
7.1 Loss functions for classification . 16

8 February 1, 2023 17
8.1 Support Vector Machines . 17
8.2 Non-separable Case . 17
8.3 Primal optimization problem . 17

9 February 6, 2023 19
9.1 Lagrange Multipliers . 19

1

Contents Statistical Machine Learning, Hanan Ather

9.2 Karush-Kuhn-Tucker (KKT) theorem . 19

10 February 8, 2023 20
10.1 Learning Theory . 20
10.2 Probably Approximately Correct (PAC) Learning 20

11 February 15, 2023 22

12 February 27, 2023 25

13 March 1, 2023 27

14 March 6, 2023 28
14.1 Rademacher Complexity . 28

15 March 8, 2023 31
15.1 Concentration Inequalities . 31
15.2 Probabilistic inequalities . 31
15.3 McDiarmid’s Inequality . 32

16 March 13, 2023 33
16.1 VC Theory . 33

17 March 15, 2023 35
17.1 VC dimension continued . 35
17.2 Growth function . 36

18 March 20, 2023 38
18.1 Learning theoretic results . 38
18.2 Introducing reproducing kernels . 38

19 March 22, 2023 41
19.1 Functional Analysis Background . 41
19.2 Reproducing kernel Hilbert spaces (RKHS) . 41

20 March 27, 2023 43
20.1 Online learning . 43

20.1.1 Mathematical Formulation . 43
20.1.2 Advantages of Online Learning . 43

20.2 Introduction to the perceptron . 43

21 March 29, 2023 45
21.1 Perceptron Algorithm . 45
21.2 Single-Layer Neural Networks . 45
21.3 Multi-Layer Neural Networks . 46
21.4 Functions . 46

22 April 3, 2023 47
22.1 Optimization . 47
22.2 Gradient descent . 47
22.3 Batch gradient descent . 47
22.4 Mini-batch gradient descent . 47
22.5 Stochasitc gradient descent . 47
22.6 Advanced optimization techniques . 48

23 April 5, 2023 49
23.1 Boosting . 49
23.2 AdaBost . 49

2

3

⋆ These notes were created during my review process to aid my own understanding and
not written for the purpose of instruction. I originally wrote them only for myself, and they
may contain typos and errors a. No professor has verified or confirmed the accuracy of these
notes. With that said, I’ve decided to share these notes on the off chance they are helpful to
anyone else.

aAny corrections are greatly appreciated.

§1 January 9, 2023

§1.1 Introduction

Three main paradigms in modern Machine Learning1:

• Supervised learning

• unsupervised learning

• semi-supervised learning

Supervised learning is historically the oldest machine learning problem and it has a well-developed
theory, methods and well-defined canonical formulation. Supervised learned basically amounts to
learning some function f via stochastic optimization.

Dataset + Algorithm→ Predictive Model

§1.2 Supervised learning

Formally in supervised learning we are seeking a mapping f : X → Y . Where X is the input
space and Y is an output space, we denote x ∈ X as instances, y ∈ Y as labels. In classification
problems Y is a finite set, and in regression Y ⊆ R. We obtain zi = (xi, yi) ∼ p on X × Y
labeled data which are generally referred to as samples or examples, made of up independet and
identically distributed (i.i.d.) samples from a data generating distribution p.2 Our objective is
to “learn” f and we accomplish by utilizing the Empirical Risk Minimization framework via
using some loss function denoted by V (f, z).
We can think of learning the mapping f : X 7→ Y by searching over a set of candiate functiosn
and finding the one that is most consistent with the training examples. More formally, we consider
a particular class of function F and choose a scalar-valued loss function denoted as V (f, z) that
measures the disagreement between our prediction f(xi) for some f ∈ F and true label yi.
Examples of Loss Functions:

• Least squares loss V (f, z) = (y − f(x))2

• Miss-classification (0-1) loss V (f, z) = 0 if sign is correct, otherwise 1

• Hinge loss (or losgistic loss) V (f, z) = log(1 + e−yf(x))

§1.3 Empirical Risk Minimization

The ERM approach comes from empirical process theory (i.e, control theory). Our objective is to
seek f ∈ F that minimizes risk (i.e., expected loss) over the data generating distribution p:

R(f) = EpV (f, z)

This optimization problem is intractable because we do not have access to p or all all possible
elements of p, and therefore we cannot elvalue the expectation without making some unrealistically

1Additionally we also have reinforcement learning which is a very important paradigm and can be viewed as a
hybrid between supervised and unsupervised learning

2In literature its also common to denote this distribution as D; i.e., (xi, yi) ∼ D for all i

3

January 9, 2023 Statistical Machine Learning, Hanan Ather

strong assumptions about the structure of D, V or f . However, under i.i.d. assumption we can
approximate the risk (expected loss) by averaging loss over the available training data. We use
sample average as a stand-in estimator for the true risk, and minimize the training error in
order to minimize the true risk R(f):

ˆR(f) = min
f∈F

1

n

n∑
i=1

V (f, zi)

. In the above equation, we only optimize the loss over the available training examples, and hope
this is a good proxy objective over the actual objective.

§1.4 Manifold learning

Manifold learning is a type of unsupervised machine learning technique that focuses on discovering
the underlying low-dimensional structure or manifold within high-dimensional data. The main
goal is to reduce the dimensionality while preserving the intrinsic structure and relationships in
the data. This is particularly useful for visualization, data compression, and noise reduction.

Original space X

Latent space F

f

g

A manifold is a continuous, smooth, and low-dimensional surface embedded in a high-dimensional
space. Real-world data often lies on or near such manifolds, which makes it possible to represent
complex data with fewer dimensions. Unlike linear techniques such as PCA, manifold learning
algorithms can capture and preserve nonlinear relationships in the data. Manifold learning
methods can be classified into two categories based on the type of structure they preserve. Local
methods focus on preserving neighborhood relationships, while global methods try to maintain the
overall structure of the data. Some popular manifold learning algorithms include:

• Isomap: It extends the idea of multidimensional scaling (MDS) by using geodesic distances
on the manifold. It preserves the global structure of the data.

• Locally Linear Embedding (LLE): LLE focuses on preserving local relationships by recon-
structing each data point as a linear combination of its neighbors. It then maps the data to
a lower-dimensional space while maintaining these relationships.

• t-Distributed Stochastic Neighbor Embedding (t-SNE): t-SNE is designed for visualizing
high-dimensional data. It constructs a probability distribution over pairs of data points in
the high-dimensional space and then finds a low-dimensional representation that minimizes
the divergence between the two distributions.

• Uniform Manifold Approximation and Projection (UMAP): UMAP is a more recent algo-
rithm that balances the preservation of local and global structures. It constructs a graph
representation of the data and optimizes the layout of the low-dimensional representation
to match the graph’s structure.

4

5

Isomap LLE

t-SNE UMAP

Local methods

Global methods

Local and global methods

Visualization

5

January 11, 2023 Statistical Machine Learning, Hanan Ather

§2 January 11, 2023

§2.1 OLS as ERM

Regression is class of statistical/computational methods that seek to estimate relationships
between a dependent (target) variable and independent variables (instances/features/inputs).
There are many different techniques used for regression: linear regression, support vector machines,
neural networks, K-nearest neighbours, random forest. The differences among the methods boils
down to two factors: how we choose represent the function/hypothesis f : X → Y and what
loss function we choose to measure the ’goodness’ of our model. In linear regression we assume
the f function we are seeking belongs to the class of linear functions, which we denoted as:
F = {w · x|w ∈ Rd} or in a expanded form:

f(x) = w0 + w1x1 + · · ·+ wdxd

Now given a data set of input variables x and labels y, how can we reasonably find the weights w?
One reasonable approach is to find w such that w · x is close to y. There are many different loss
functions to find the weight vector w ∈ Rd The least squares or L2 loss is V (f, z) = (y−f(x))2.
In this setting we let X = Rd and Y ⊂ R.

§2.2 Mathematical formalization of linear regression

We store the data into two matrices: Y is an m× 1 column vector containing labels, and X is a
m× d matrix containing inputs or features. We perform empirical risk minimization for the
squared loss V (f, z) := (y − f(x))2, with z = (x, y). The optimization problem is defined as

min
w

m∑
i=1

(yi − w · xi)
2 or min

argmin w
∥ Y − Xw ∥2

We define an objective function on Rd

J(w) =∥ y − w · x ∥2 (1)

J(w) = (Y − Xw)T (Y − Xw)
= YTY − 2wTX TY + wTX TXw

By differentiation we find that the gradient of the smooth function J(w) is zero iff the matrix
equations is satisfied

(X TX)w = X TY

How do we know there exists a minimizer?
The w which minimizes (1) ⇔ solves Aw = b where b = XT y and A = XTX. LetM = {w|Aw =
b} be the set of minimizers (1) and let N = ker A ⊂ Rd. Since A = XTX is a symmetric matrix
by construction, we know from linear algebra that N ⊥ Col A. Therefore, b = XT y ∈ Col(A),
which implies there exists at least one minimizer to (1) or equivalently,M ≠ ∅ 3.

§2.3 Linear Algebra facts

Properties of Gram matrix:

• A = XTX is called the gram matrix of X, its a matrix of inner products of d columns of
X. These columns are called column vectors in Rm, and we denote them x1, . . . , xd.

• A is a symmetric matrix (i.e., AT = A). This implies that null(A) ⊥ Col(A) and there
exists an orthonormal basis. (uȦw = uTAw = uTATw = (Au)Tw = Auẇ)

3When A = XTX is invertible there is a unique solution, otherwise, there are infinitely many solutions

6

7

• A =
∑

i xix
T
i is the sum of rank 1-matrices.

• A is semi-definite (uTAu ≥ 0)

• Nullspace of A coincides with null space of X; Null(X) = Null(A) = {v ∈ Rd : Av = 0}.
XTX is invertible ⇐⇒ X is invertible ⇐⇒ X has a null space of dimension zero ⇐⇒
all columns of X are independent

• The inverse of non-square matrices is not defined. The left inverse is given by X† :=
(XTX)−1XT

When solving the equation Aw = b there are three possibilities:

(1) There exists a unique solution if A is invertible

(2) infinitely many solutions if b ⊥ null(A), or equivalently b ∈ Col(A)

(3) No solutions when b ̸⊥ null(A)

How do we know there always exists a solution to OLS? Since in the OLS case b = XT y
the condition b ⊥ null(A) is always satisfied.4, the third case never occurs for us. Indeed,
(XTY)T v = YTX v and this is non-zero when v ∈ N . This means we always have one solution.

§2.4 Column Perspective

Xw is the linear combination of d vectors x1, . . . , xd using the weights w1, . . . , wd. Our orginal
optimization problem was to find w such that Xw is as close to Y in squared norm (∥ Y −Xw ∥2).
In other words, we are looking weights w such that the point Xw ∈ S = span{x1, . . . , xd} is
closest to Y. The unique in S that is closest to Y is the projection of Y on to the space S.
Is there a unique weighting w of x1, . . . , xd? Whether or not if there is a unique weighting of
w of x1, . . . , xd depends on if the vectors x1, . . . , xd are linearly independent. If they are not
linearly independent, there are infinitely many different weightings w that will give the same
point p = Xw, and these w just differ by the elements of N .

§2.5 Spectral decomposition

We use the spectral decomposition to understand solutions to OLS when A is not invertible.

⋆ Since A is a real-symmetric matrix, their exits an orthonormal basis {u1, . . . , ud} for Rd consisting of
eigenvectors of Aa

aThis is known as the “spectral theorem for symmetric matrices”

• We denote the basis eigenvectors as u1, u2, . . . for A; where each eigenvector λi is associated
to ui; (i.e., Aui = λiui) real eigenvalues λi ≥ 0, indexed in ascending order

• Since A is positive semi-definite, all λi ≥ 0; uTAu ≥ 0 for all u ∈ Rd, so in particular
uT
i Aui ≥ 0 but this is λi.

• N is span span of ui with λi = 0, let r =dim(N).

• In terms of basis {ui}, write w =
∑

αiui and b = βiui.

• Matrix equation Aw = b can be re-written in terms of eigenvalues and eigen vectors∑
i>r

αiλiui =
∑
i>0

βiui

• there exists a unique solution if and only if β1, . . . , βr = 0 (i.e., b ⊥ N).

4Thus we always have at least one solution to OLS

7

January 11, 2023 Statistical Machine Learning, Hanan Ather

• And w =
∑

αiui if and only if αi =
βi

λi
,∀i > r

• α1, . . . , αr are arbitrary due to the fact we that we have a degree of freedom for every
λ1, . . . , λr = 0.

Since A is a real symmetric matrix there exits an orthonormal basis {u1, · · · , ud} for Rd

consisting of egienvectors.5

5This is known as the spectral theorem for symmetric matrices

8

9

§3 January 16, 2023

§3.1 Projection Prospective of OLS

Now we view our matrix X in terms of its columns x1, . . . , xd. Multiplying a Xw =
∑d

i=1 wixi

is a linear combination of the vectors x1, . . . , xd using weights w1, . . . , wd. Our objective is to
minimize ∥ y −Xw ∥2. In other words, we are seeking the w ∈ Rd such that Xw is as close as
possible to y in L2 norm. Let e = y−Xw; now w is a solution if and only if eTXu = 0,∀u ∈ Rd6.
This amounts to xT (y − xw︸ ︷︷ ︸

=e

) = 0, i.e., xTxw = XT y as before.

§3.2 Occam’s razor approach

If there are infinitely many solutions, one approach is to choose the one with min norm. This is a
form of Occam’s razor: “Suppose there exist two explanations for an occurrence. In this case the
simpler one is usually better”. Since our solutions are of the form w = αiui +

∑
i>1(β1λi)ui, the

solution with minimum norm is

w =
∑
i>1

βi

λi
ui,

obtained by letting α1 = 0

§3.3 Regularized Least Square

Our ultimate goal in machine learning is to seek functions that generalize to all (x, y) ∼ p.
Different functions could achieve the same sample loss, but their generalization outside the
training data could vary. In regularized least squares (RLS) we modify the objective function
with a penalty term to control for “complexity”

min
w
∥ Y − Xw ∥2 +γ ∥ w ∥2

where γ ≥ 0 is a hyper-parameter that specifies how much the norm of w maters.

⋆ The regularized objective function has a minimum when

(XTX + γI)w = XTY

And if γ > 0 then XTX + γI is guaranteed to be invertible since all eigenvalues λi + γ > 0

§3.4 Recursive Least Squares

Recursive least squares (RecLS) is online version of OLS where we update the least square
coefficients based on the arrival of new data. Its a is well-known adaptive filtering algorithm and
it has connections to Kalman filter. We assume that we have n data at time n.

X(n) =

xT
1

xT
2
...
xT
n

 ,Y(n) =

y1
y2
...
yn

 (2)

6the vector e is orthogonal to any vector in the span of column space of matrix X, i.e., eT x = 0

9

January 16, 2023 Statistical Machine Learning, Hanan Ather

Now we assume that a new observation comes in at time t = n+ 1 so our new data matrix is

X(n+1) =

xT
1

xT
2
...
xT
n

xT
n+1

 ,Y(n+1) =

y1
y2
...
yn

yn+1

 (3)

We would now like to compute

wn+1 = (X T
(n+1)X(n+1))

−1X T
(n+1)Y(n+1)

Should we compute this wn+1 from scratch? or can we somehow leverage previous computations
to compute the new wn+1. To simply we define new notation:

C := X(n+1) =

[
C0

C1

]
and b := Y(n+1) =

[
b0
b1

]
Now we let

wn+1 = (X T
(n+1)X(n+1))

−1︸ ︷︷ ︸
:=Pn+1

X T
(n+1)︸ ︷︷ ︸
=CT

Y(n+1)︸ ︷︷ ︸
=b

= Pn+1C
T b (4)

Likewise,

wn = (X T
(n)X(n))

−1︸ ︷︷ ︸
:=Pn

X T
(n)︸︷︷︸

=CT
0

Y(n+1)︸ ︷︷ ︸
=bT0

= PnC
T
0 b0 ⇐⇒ P−1

n wn = CT
0 b

T
0 (5)

Now a fact about block matrices is:

CTC = CT
0 C0 + CT

1 C
T
1 and CT b = CT

0 b
T
0 + CT

1 b
T
1 (6)

Therefore, wn+1 = Pn+1C
T b ⇐⇒ wn+1 = Pn+1[C

T
0 b

T
0︸ ︷︷ ︸

=P−1
n wn

+CT
1 b

T
1],

=⇒ wn+1 = Pn+1[P
−1
n wn + CT

1 b
T
1]

And since Pn+1 = (CTC)−1 ⇐⇒ P−1
n+1 = CTC ⇐⇒ P−1

n+1 = CT
0 C0︸ ︷︷ ︸
P−1

n

+CT
1 C

T
1 ⇐⇒ P−1

n+1 =

P−1
n + CT

1 C
T
1 , we have

P−1
n = P−1

n+1 − CT
1 C

T
1

Combing the facts we get,

wn+1 = Pn+1[(P
−1
n+1 − CT

1 C
T
1)wn + CT

1 b
T
1] = wn + Pn+1C

T
1 (b1 − C1wn)

10

11

§4 January 18, 2022

§4.1 Linear Learning Algorithms

In this basic learning setting, we consider x ∈ X = Rd and aim to find a predictor for y in a
space of linear (or affine) functions. We can differentiate between two scenarios:

1. Regression, where Y ⊂ R is an interval.

2. Classification, where Y = {−1,+1}.

For regression, we saw Ordinary Least Squares (OLS) with squared loss. For classification, we
will see Support Vector Machines (SVMs) with hinge loss. We assume that (x, y) ∼ p, where p is
a distribution on Rd × Y such that y is linearly related to x. We search for a predictor f : x 7→ y
in the space F of linear functions or the sign of linear functions, depending on the case.
For case (1), an example is y = f0(x) + ϵ, where f0 ∈ F , and ϵ has zero mean, representing

the noise, typically Gaussian, i.e., N(0, σ2). For case (2), the noise probability decreases with
the distance of x from a true underlying linear separator. One way this can happen is if
y = sgn(f0(x) + ϵ), where the linear separator is the hyperplane H = {f0(x) = 0}. Adding noise
ϵ flips the sign of y if and only if |ϵ| > |f0(x)| with opposing sign.

§4.2 Learning Algorithm

What is learning algorithm?
A supervised learning algorithm A is a way of choosing f ∈ F based on data z̄ ∈ Zn. We
can view the learning algorithm as a map A : Zn → F , where A : z̄ = (z1, . . . , zn) 7→ fz̄,A. And
evaluate learning algorithms, A, by how much they can minimize R(f).

Definition 4.1 (Bayes Error, Best in class) There are essentially three levels at which we can
view our function f at: f∗, fF , fF,nA = A(z̄).

• f∗ : the function that minimizes the risk R(f) = EpV (f, z) over the class of all any
measurable function over the distribution P . And R(f∗) is the Bayes error.

• fF : the function that minimizes risk R(f) over some restricted class F of measurable
functions for the distribution P . A only operates within F .

• fF,nA = A(z̄): the function produced by the algorithm A, on sample z̄ = (z1, . . . , zn)
from Pn a

ain fact this is an abuse of notation and fF,z̄,A would be more precise since the algorithm sees a specific
sample z̄. However, the notation is emphasizing the fact that the function depends on the algorithm A
handing a n−sample from P .

• generalization error = R(fF,nA)−R(f∗)

• estimation error = R(fF,nA)−R(fF)

• approximation error = R(f§)−R(f∗)

generalization error = estimation error + approximation error

§4.3 Bayes Optimal

Proposition 4.2. Given V (f, z) = (f(x)− y)2, f∗ = Ep[y|x] is the Bayes optimal..

Proof. Given the squared error loss function V (f, z) = (f(x)− y)2, we want to find the Bayes
optimal function f∗. The Bayes optimal function is the function that minimizes the expected loss
with respect to the data-generating distribution p(x, y). It can be written as:

11

January 18, 2022 Statistical Machine Learning, Hanan Ather

f∗ = argmin
f∈F

Ep(x,y)[V (f, z)]

= argmin
f∈F

Ep(x,y)[(f(x)− y)2]

Let’s condition on X = x:

E
[
(f(x)− y)2 | X = x

]
= E

[
(f(x)− Ep[y | x] + Ep[y | x]− y)

2 | X = x
]

= E
[
(f(x)− Ep[y | x])2 | X = x

]
+ E

[
(Ep[y | x]− y)2 | X = x

]
= E

[
(f(x)− Ep[y | x])2 | X = x

]
+ [Ep[y | x]− y]

2

The expression is minimized when f(x) = Ep[y | x]. Therefore, the Bayes optimal function is
f∗ = Ep[y | x].

§4.4 Bias–variance tradeoff

The bias-variance tradeoff is an important concept in statistical learning theory, describing the
balance between model complexity and generalization. It arises when estimating the expected
test error for a given learning algorithm. The expected test error can be decomposed into three
parts: bias, variance, and irreducible error.

Consider a learning algorithm that estimates a target function f(x) using the hypothesis h(x).
Given a loss function L(f(x), h(x)), the expected test error can be written as:

E [L (f(x), h(x))]

For simplicity, we will consider the squared error loss function:

L (f(x), h(x)) = (f(x)− h(x))
2

The expected test error can then be decomposed into bias, variance, and irreducible error as
follows:

E
[
(f(x)− h(x))

2
]
= E

[
(f(x)− E[h(x)] + E[h(x)]− h(x))

2
]

= E
[
(f(x)− E[h(x)])2

]
+ 2E [(f(x)− E[h(x)]) (E[h(x)]− h(x))]

+ E
[
(E[h(x)]− h(x))

2
]

= (f(x)− E[h(x)])2 + 0 + E
[
(E[h(x)]− h(x))

2
]

= Bias2 [h(x)] + Var [h(x)]

(7)

In the above decomposition, the first term, Bias2 [h(x)], represents the squared bias, which
quantifies the average error introduced by approximating the true function f(x) by the expected
hypothesis E[h(x)]. The second term, Var [h(x)], represents the variance, which quantifies the
expected deviation of the hypothesis h(x) from its expected value E[h(x)].

The bias-variance tradeoff states that as model complexity increases, the bias typically decreases
while the variance increases. A model with high complexity might fit the training data very well,
but it is also more likely to overfit, resulting in poor generalization to new data. On the other
hand, a simpler model might not fit the training data as well, but it is more likely to generalize
well to new data. The goal is to find the right balance between bias and variance that minimizes
the expected test error.

12

13

§5 January 23, 2023

§5.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a supervised dimensionality reduction technique
used in machine learning and statistics. It aims to find the linear combinations of features that
best separate two or more classes. LDA can be used for classification, dimensionality reduction,
or feature extraction. It assumes that the data follows a Gaussian distribution and that the
covariance matrices of the classes are equal.
Here’s a step-by-step explanation of LDA

1. Compute the class means: Calculate the mean vector for each class in the dataset.

2. Compute the overall mean: Calculate the mean vector of the entire dataset, where µ is the
overall mean, n is the total number of samples, and yi is the i-th sample.

3. Compute the within-class scatter matrix (SW): This matrix represents the scatter of the
samples within each class.

4. Compute the between-class scatter matrix (SB): This matrix represents the scatter of the
class means with respect to the overall mean.

5. Compute the optimal projection (W): The goal is to find a projection matrix W that
maximizes the ratio of the determinant of the between-class scatter matrix to the determinant
of the within-class scatter matrix. The optimal projection matrix W is formed by selecting
the eigenvectors corresponding to the largest eigenvalues of the matrix S−1

W SB . The number
of eigenvectors selected depends on the desired dimensionality of the reduced space.

6. Project the data: Transform the original data using the projection matrix W .

Suppose we have 2 classes and d−dimensional samples, x1, . . . , xn where n1 samples come from
first class and n2 samples come from second class. Consider a project on a line, where we let the
direction of the line be given by a vector v. The dot product of vtxi is the distance of projection
of xi from the origin. Therefore, vtxi is the projection of xi into a one dimensional subspace.
Let µ̃1 and µ̃2 be the means of the projections of classes 1 and 2, and let µ1 and µ2 be the means
of the classes 1 and 2.
We define scatter as

s =

n∑
i=1

(zi − µz)
2

which measures the spread of the data around the mean just as variance, however, its just on a
different scale. Fisher’s idea for LDA was to normalize µ̃1 − µ̃2 by scatter. Let yi = vtxi, the
scatter for the projected samples of class 1 is

s̃1
2 =

∑
yi∈Class 1

(yi − µ̃1)
2

and scatter for projected samples of class 2 is

s̃2
2 =

∑
yi∈Class 2

(yi − µ̃2)
2

Therefore, we want to project on a line v which maximizes the following function:

J(v) =
(µ̃1 − µ̃2)

2

s̃1
2 + s̃2

2

13

January 25, 2023 Statistical Machine Learning, Hanan Ather

§6 January 25, 2023

§6.1 LDA continued

The core idea behind LDA is that we want to project the data such that the points of two classes
are “maximally separated”. Recall that, we denote projected samples as yi = vtxi. And we
compute the scatter for project samples of class 1 and 2.

⋆ Fisher linear discriminant is to project on a line in the direction of v which maximizes

J(v) =
(µ̃1 − µ̃2)2

s̃1
2 + s̃2

2

If we fine v which makes J(v) large, we are guaranteed that the classes are well separated.

Definition 6.1 (LDA Objective Function) The objective function of Fisher Linear Discriminant
can be written as:

J(v) =
(µ̃1 − µ̃2)

2

s̃1
2 + s̃2

2 =
vtSBv

vTSWv

Note the invariance of J(v) to re-scaling v so we can instead restate the optimization as:

max vtSBv subject to vTSWv = 1

1. Calculate the mean of each class, denoted as µi for class i, and the overall mean µ.

2. Compute the within-class scatter matrix SW and the between-class scatter matrix SB :

SW =

k∑
i=1

∑
x∈Xi

(x− µi)(x− µi)
T ,

SB =

k∑
i=1

Ni(µi − µ)(µi − µ)T ,

where Xi represents the samples in class i, and Ni is the number of samples in class i.

3. Find the linear transformation matrix W that maximizes the Fisher’s criterion J(W):

J(W) =
det(WTSBW)

det(WTSWW)
.

This is achieved by solving the generalized eigenvalue problem:

S−1
W SBwi = λiwi,

where wi and λi are the eigenvectors and eigenvalues, respectively.

4. Choose the eigenvectors corresponding to the r largest eigenvalues as the columns of the
transformation matrix W . This will reduce the feature space dimension from d to r.
Typically, r < k.

5. Project the original data samples onto the new feature space using the transformation
matrix W . The transformed data can be used for classification or further processing.

LDA has since been extended to handle multiple classes and has found applications in various
fields such as pattern recognition, machine learning, and computer vision. It has also served as
the basis for other dimensionality reduction techniques, such as Quadratic Discriminant Analysis
(QDA), which considers non-linear boundaries between classes.

14

15

§6.2 PCA

1. Let X be the data matrix of size n× d, where n is the number of samples and d is the number
of features.
2. Compute the mean vector µ of the data:

µ =
1

n

n∑
i=1

xi (8)

3. Center the data matrix X by subtracting the mean vector µ:

Xcentered = X− µ (9)

4. Calculate the covariance matrix Σ of the centered data:

Σ =
1

n− 1
X⊤

centeredXcentered (10)

5. Compute the eigenvectors vi and eigenvalues λi of the covariance matrix Σ:

Σvi = λivi (11)

6. Sort the eigenvectors and their corresponding eigenvalues in descending order of eigenvalues.
7. Select the first k eigenvectors v1, . . . ,vk to form the projection matrix W:

W = [v1 v2 . . . vk] (12)

8. Project the centered data matrix Xcentered onto the lower-dimensional space using the
projection matrix W:

XPCA = XcenteredW (13)

15

January 30, 2023 Statistical Machine Learning, Hanan Ather

§7 January 30, 2023

§7.1 Loss functions for classification

In machine learning, a loss function, also known as a cost function or objective function, is a
mathematical function that measures the discrepancy between the predicted output and the
actual output (or target) for a given input. It is used during the training process to evaluate the
performance of a model and adjust its parameters to minimize the loss. Loss functions are crucial
because they guide the optimization process and determine how well a model learns from the
data. Loss functions can be broadly categorized into two types:

• Regression loss functions: Used when predicting continuous values.

• Classification loss functions: Used when predicting categorical values or class labels.

Thus far we have considered regression, now we study classification. In classificaion we are
studying discrete value-functions, and consider the case wehre Y = {−1,+1}7.

• the square loss V (w, y) = (w − y)2 = (1− wy)2

• hinge loss V (w, y) = max{1− wy, 0} =: |1− wy|+

• logistic loss V (w, y) = (ln2)−1ln(1 + e−wy)

Looking for min
f∈F

∑n
i=1 V (f, zi) is an intractable combinatorial problem for 0 − 1 loss 8. Is this

because we would have to consider all possible signs of our data points?
Instead of trying to do ERM on the 0− 1 loss, We solve this problem by

1. approximating the solutions

2. surrogate V (f, zi) and minimize this

We rewrite the 0− 1 loss

V0:1(f, z) =
1− sgn(yf(x))

2

The way we have defined t:

• if t > 0 this implies that the data is assigned to the correct category.

• on the other hand if t < 0 this implies that the data is assigned to the wrong category.

• value to t is called the margin because it indicates how far the data point is from the
decision boundary.

where t = yf(x) is called the margin.
An ideal loss function should have the following properties: (1) Differentiable: To allow the

use of gradient-based optimization algorithms like gradient descent. (2) Sensitive to model
performance: It should accurately reflect the performance of the model on the given task. (3)
Scalable: The loss function should work well with large datasets and high-dimensional spaces.

7The choice of a loss function depends on the problem, data distribution, and the desired properties of the
model. For instance, in regression tasks, if the data has outliers, using MAE can be more robust than MSE. In
classification, cross-entropy loss is generally preferred over other options due to its properties and compatibility
with probabilistic outputs.

8An intractable combinatorial problem is a problem where the number of possible solutions grows exponentially
with the size of the input, making it computationally impractical or impossible to solve optimally using
brute-force or exhaustive search methods within a reasonable time frame.

16

17

§8 February 1, 2023

§8.1 Support Vector Machines

Support Vector Machines (SVMs) are a supervised machine learning algorithm used for classifi-
cation and regression tasks. SVMs work by finding the optimal hyperplane that maximizes the
margin between different classes in the feature space, providing robust and accurate predictions.
They are particularly effective in high-dimensional spaces and can handle linearly separable as
well as non-linearly separable data by using kernel functions to transform the input space into
higher dimensions, enabling the discovery of complex decision boundaries.

min
w,b

1

2
∥w∥2

subject to: yi(w · x+ b)− 1 ≥ 0

We now introduce Lagrange variables αi ≥ 0, i ∈ [m], associated to the m constraints. The
Lagrangian can then be defined for all w ∈ Rn, b ∈ R and α ∈ Rm

+ , by

L(w, b, α) =
1

2
∥w∥2 −

m∑
i=1

αi[yi(w · x+ b)− 1)]

The KKT conditions are obtained by setting the gradient of the Lagrangian with respect to the
primal variables w and b to zero and by writing the complementary conditions:

∇wL = w −
m∑
i=1

αiyixi = 0 =⇒ w =

m∑
i=1

αiyix

∇bL = −
m∑
i=1

αiyi = 0 =⇒
m∑
i=1

αiyi = 0

αi[yi(w · x+ b)− 1)] = 0 =⇒ α = 0 ∨ yi(w · x+ b) = 1

From the last condition we can see that if α ̸= 0, then y1(w · xi + b) = 1.

§8.2 Non-separable Case

Practically speaking, the training data is not linearly separable, which implies that for any hyper
plane w · x+ b = 0, there exists xi ∈ S such that

yi[w · xi + b] ≱ 1.

Therefore we use a relaxed version of the constraints for each i ∈ [m], there exists a ξi ≥ 0 such
that

yi[w · xi + b] ≥ 1− ξi

The variables ξi are known as slack variables. A slack variable ξi measures the distance by
which vector xi violates the inequality yi[w · xi + b] ≥ 1.

§8.3 Primal optimization problem

In optimization, the primal problem refers to the original formulation of an optimization problem,
while the dual problem is derived from the primal problem using a technique called Lagrangian
duality. Both primal and dual problems are interconnected and provide valuable insights into
the properties and solutions of each other. In the context of Support Vector Machines (SVMs),
solving the dual problem instead of the primal problem has advantages such as the ability to use
kernel functions to handle non-linearly separable data and the sparsity of the solution, which

17

February 1, 2023 Statistical Machine Learning, Hanan Ather

leads to efficient representations and faster predictions.

min
w,b,ξ

1

2
∥w∥2 + C

m∑
i=1

ξi

subject to: yi(w · x+ b) ≥ 1− ξi, ξi ≥ 0, i ∈ [m],

The parameter C determines the trade-off between margin-maximization and the minimization of
the slack penalty.

• As C → ∞ any non-zero ξi will be forced to 0, therefore, each of the finitely many data
points is prevented from being an outlier and attain the hard margin classifier.

• Therefore, the higher the value of C the less slack we are giving the data points.

18

19

§9 February 6, 2023

§9.1 Lagrange Multipliers

Lagrange multipliers are a mathematical method used to find the extrema (maxima or minima)
of a function subject to constraints. Given a function f(x) that we want to optimize and a
constraint function g(x) = c, where x ∈ Rn, Lagrange multipliers help us find the points where
the gradient of the objective function is parallel to the gradient of the constraint function.

The method is based on introducing a new function, called the Lagrangian, which is defined as
follows:

L(x, λ) = f(x)− λ (g(x)− c) (14)

Here, λ is called the Lagrange multiplier. To find the extrema of f(x) subject to the constraint
g(x) = c, we need to solve the following system of equations:

∂L
∂x

= ∇f(x)− λ∇g(x) = 0 (15)

g(x) = c (16)

The first equation states that the gradient of the objective function and the gradient of the
constraint function are proportional (parallel) at the optimal point. The second equation enforces
the constraint. By solving this system of equations, we can find the optimal points x and the
corresponding Lagrange multiplier λ.

§9.2 Karush-Kuhn-Tucker (KKT) theorem

The Karush-Kuhn-Tucker (KKT) theorem is an extension of the method of Lagrange multipliers
for optimization problems with inequality constraints. Suppose we have an objective function
f(x) that we want to optimize (minimize or maximize) subject to inequality constraints gi(x) ≤ 0
and equality constraints hj(x) = 0.

To solve this problem, we introduce the KKT conditions, which consist of the following set of
equations:
1. Stationarity condition:

∇f(x∗)−
m∑
i=1

λ∗
i∇gi(x∗)−

p∑
j=1

µ∗
j∇hj(x

∗) = 0 (17)

2. Primal feasibility:

gi(x
∗) ≤ 0, i = 1, . . . ,m (18)

hj(x
∗) = 0, j = 1, . . . , p (19)

3. Dual feasibility:
λ∗
i ≥ 0, i = 1, . . . ,m (20)

4. Complementary slackness:

λ∗
i gi(x

∗) = 0, i = 1, . . . ,m (21)

Here, x∗ is the optimal solution, and λ∗
i and µ∗

j are the Lagrange multipliers associated with
the inequality and equality constraints, respectively.
The KKT theorem states that, under certain conditions, a point x∗ is optimal if and only if

there exist Lagrange multipliers λ∗
i and µ∗

j such that the KKT conditions are satisfied.
In summary, the KKT theorem generalizes the method of Lagrange multipliers to handle

optimization problems with both equality and inequality constraints.

19

February 8, 2023 Statistical Machine Learning, Hanan Ather

§10 February 8, 2023

§10.1 Learning Theory

In the field of theoretical machine learning, learning theory serves as a framework for investigating
fundamental questions related to machine learning. These may include:

• Inquiries into the effectiveness of different learning algorithms, what kind of algorithms
work? Do some work better than others?

• Time complexity: how time does it take to learn an model?

• Sample complexity: The amount of data required to learn the model

• the development of general principles that govern the learning process in different contexts

§10.2 Probably Approximately Correct (PAC) Learning

PAC learning (Probably Approximately Correct learning) is a framework in machine learning
that aims to provide theoretical guarantees on the ability of an algorithm to generalize well from
a limited amount of training data. The basic idea is that a learning algorithm is considered
PAC-learnable if it can efficiently learn a concept that is “probably” correct (i.e., has a high
probability of being accurate) and “approximately” correct (i.e., the learned concept is not too
far from the true concept) given a limited number of training examples. The PAC framework
provides a mathematical basis for analyzing the sample complexity of learning algorithms, which
is the minimum number of training examples required to achieve a certain level of accuracy.

In the binary classification setting, let Y = {0, 1} 9 be the binary labels. Our goal is to learn a
map f : X → Y with low risk.
PAC Learning terms:

• concept can be represented as a Boolean c : X → {0, 1}, where X is the input space

• Given a set of training examples

S = {(x1, c(x1)), . . . , (xm, c(xm))}

where xi is the data point and c(xi) is the corresponding label

• The goal of PAC learning is to output a hypothesis, h : X → {0, 1} that is “probably”
correct with high probability (1− δ), and “approximately” correct in the sense that error
between h and c is not too large, ≤ ε

In PAC learning concept refers to the underlying function or patterns that generates the observed
data.

Definition 10.1 (Generalization Error) Given a hypothesis h ∈ H, a target concept c ∈ C, and
an underlying distribution D, the generalization error or risk of h is defined by

R(h) = P
x∼D

[h(x) ̸= c(x)] = E
x∼D

[1h(x)̸=c(x)],

where 1ω is the indication function.

Since the distribution D and the target concept class c are unknown to the learner, the general-
ization error is not accessible to the learner.

We define the hypothesis class H to be the set all classifiers considered by the learning algorithm.
Is hypothesis relative to a learning algorithm? Yes, if we are studying neural networks, then we
would consider H to be the set of all classifiers representable by some neural architecture.

9Its important to notice that the PAC learning framework uses the 0− 1 loss function. Before when we were
defining risk, we were considering many different types of loss functions, now we are only considering the 0− 1
loss

20

21

Definition 10.2 (PAC learning) A concept class C is said to be PAC-learnable if there
exists an algorithm A and polynomial function poly(·, ·, ·) such that for any ε and δ, for all
distributions D on X and for any target concept c ∈ C, the following holds for any sample
size m ≥ poly(1/ε, 1/δ, size(c))a :

P
S∼Dm

[R(hS) ≤ ε] ≥ 1− δ

If A further runs in poly(1/ε, 1/δ, size(c)), then C is said to be efficiently PAC-learnable.
When such an algorithm A exists, its called a PAC-learning algorithm for C.

aSometimes size(c) is omitted from the defintion when computational representation is of concepts is
straight forward or not considered

In otherwords, the concept class C is PAC learnable by the algorithm A if after seeing a number
examples polynomial in 1/ε and 1/δ, A returns an approximately correct (Accuracy ≥ 1− ε) h
with high probability (Prob ≥ 1− δ). Its important to note that this is a distribution-free worst
case analysis, where D is arbitrary

We are allow the algorithm some exposure to the distribution D through its training, and what
we are asking is how well can the algorithm use that exposure to an arbitrary distribution D in
order to make a low risk prediction.

21

February 15, 2023 Statistical Machine Learning, Hanan Ather

§11 February 15, 2023

In class we covered the example of Axis-aligned rectangles algorithm that made no errors on the
training set S. We leveraged this property in our proof for the example.
In general we say that a hypothesis h is consistent with the sample S if it makes no errors on
that sample.
We say an algorithm is consistent is for every sample S, it returns a hypothesis hS which is
consistent. For an algorithm A to be consistent, we need C to be a subset of H, which is known
as the realizable setting. In this case, the approximation error is zero.

Theorem 11.1 (Learning bounds – finite H, consistent case) — Let H be a finite set of
functions mapping from X to Y. Let A be an algorithm that for any target concept c ∈ H
and i.i.d sample S returns a consistent hypothesis hS : R̂(hS) = 0. Then, for any ε, δ > 0,
the inequality P

S∼Dm
[R(hS) ≤ ε] ≥ 1− δ holds if

m ≥ 1

ε

(
log|H|+ log

1

δ

)

Proof. Let’s denote the true risk R(h) and the empirical risk R̂(h) for a hypothesis h ∈ H. We
have:

R(h) = P(x,y)∼D[h(x) ̸= y]

R̂(h) =
1

m

m∑
i=1

I[h(xi) ̸= yi]

By using the Union Bound, we can bound the probability of the event that at least one
hypothesis in H has a true risk greater than ϵ:

P[∃h ∈ H : R(h) > ϵ] ≤
∑
h∈H

P[R(h) > ϵ]

By applying the Chernoff-Hoeffding Bound to each term on the right-hand side, we have:

P[∃h ∈ H : R(h) > ϵ] ≤
∑
h∈H

exp(−2mϵ2)

Using the inequality m ≥ 1
ϵ (log |H|+ log 1

δ), we get:∑
h∈H

2 exp(−2mϵ2) ≤
∑
h∈H

2
δ

2|H|
= δ

Now, consider the complement of the event that at least one hypothesis in H has the difference
between true risk and empirical risk greater than ϵ. This event implies that for all h ∈ H, we have
|R(h)− R̂(h)| ≤ ϵ. Since the algorithm A returns a consistent hypothesis hS with R̂(hS) = 0, we
have:

P[R(hS) ≤ ϵ] ≥ 1− δ

Any finite concept class is PAC learnable by consistent algorithm. For axis aliged
rectangles we required

m ≥ 4

ε
log

4

δ

but in that case the hypothesis class was infinite.

22

23

Corollary 11.2

Fix ε > 0 and S denote i.i.d. sample of size m. Then for any hypothesis h : X → {0, 1}, the
following inequalities hold:

P
S∼Dm

[R̂(hS)−R(hS) ≥ ε] ≤ exp(−2mε2)

P
S∼Dm

[R̂(hS)−R(hS) ≤ −ε] ≤ exp(−2mε2)

By the union bound, this implies the following two-sided inequality:

P
S∼Dm

[R̂(hS)−R(hS) ≥ −ε] ≤ 2exp(2mε2)

Proof. Let S be an i.i.d. sample of size m, and let Zi = I[h(xi) ̸= yi] be an indicator random
variable for the i-th sample. Then, we have:

R̂(h) =
1

m

m∑
i=1

Zi

R(h) = E

[
1

m

m∑
i=1

Zi

]

Since Zi are i.i.d. Bernoulli random variables with mean R(h) and 0 ≤ Zi ≤ 1, we can apply
the Chernoff-Hoeffding Bound. The Chernoff-Hoeffding Bound states that for any ϵ > 0, the
following inequalities hold:

P

[
1

m

m∑
i=1

Zi −R(h) ≥ ϵ

]
≤ exp(−2mϵ2)

P

[
1

m

m∑
i=1

Zi −R(h) ≤ −ϵ

]
≤ exp(−2mϵ2)

These inequalities are equivalent to:

P
S∼Dm

[R̂(hS)−R(hS) ≥ ϵ] ≤ exp(−2mϵ2)

P
S∼Dm

[R̂(hS)−R(hS) ≤ −ϵ] ≤ exp(−2mϵ2)

Applying the union bound, we get the two-sided inequality:

P
S∼Dm

[|R̂(hS)−R(hS)| ≥ ϵ] ≤ 2 exp(−2mϵ2)

Corollary 11.3 (Generalization bound- single hypothesis)

Fix hypothesis h : X → {0, 1}. Then for any δ > 0, the following inequality holds with with
probability at least:

R(hS) ≤ R̂(hS) +

√
log 2

δ

2m

Proof. Let S be an i.i.d. sample of size m, and let Zi = I[h(xi) ̸= yi] be an indicator random
variable for the i-th sample. Then, we have:

23

February 15, 2023 Statistical Machine Learning, Hanan Ather

R̂(h) =
1

m

m∑
i=1

Zi

R(h) = E

[
1

m

m∑
i=1

Zi

]

Since Zi are i.i.d. Bernoulli random variables with mean R(h) and 0 ≤ Zi ≤ 1, we can apply
the Chernoff-Hoeffding Bound. The Chernoff-Hoeffding Bound states that for any δ > 0, the
following inequality holds with probability at least 1− δ:

P

 1

m

m∑
i=1

Zi −R(h) ≥

√
log 2

δ

2m

 ≤ δ

This inequality is equivalent to:

P
S∼Dm

[R(hS) ≤ R̂(hS) +

√
log 2

δ

2m
] ≥ 1− δ

Thus, the generalization bound for a single hypothesis is:

R(hS) ≤ R̂(hS) +

√
log 2

δ

2m

24

25

§12 February 27, 2023

Next we cover deterministic versus stochastic scenarios, and we also look at estimation versus
approximation error. The stochastic scenario is there is not a single y deterministically associated
to each x, but rather P(y|x) for each x value.
We saw the defintion of Bayes error earlier in the course, but now we define it with more
mathematical formaility:

Definition 12.1 (Bayes Error) Given a distribution D over X × Y, the Bayes error R∗ is
defined as the infimum of errors achieved by measurable functions h : X → Y:

R∗ = inf
h measurable

R(h)

A hypothesis h with R(h) = R∗ is called Bayes hypothesis or Bayes classifier.

In practice, hypothesis sets are generally infinite. All the results we previously saw only applied
to finite hypothesis classes. Our next objective will be to derive and generalize results for learning
guarantees for infinite hypothesis sets. We will see that Rademacher complexity will be a useful
idea, and helps derive bound via McDiarmid’s inequality. Furthermore, two additional notions
we will leverage are VC-dimension and growth function. The idea is to first relate Rademacher
complexity to the growth function and then bound the growth function in terms of VC-dimension,
since the VC-dimension is often to bound/estimate.

Theorem 12.2 (Learning bounds – finite H, inconsistent case) — Let H be a finite hypothesis
set. hen for any δ > 0, the following inequality holds with with probability at least:

R(hS) ≤ R̂(hS) +

√
log|H|+ log 2

δ

2m
, h ∈ H

This implies that generalization error is proportional to the square root of ratio of bitsize H
to sample size m and it drops as 1/

√
m

Proof. Let H be a finite hypothesis set, and let S be an i.i.d. sample of size m. For each

hypothesis h ∈ H, let Z
(h)
i = I[h(xi) ̸= yi] be an indicator random variable for the i-th sample.

Then, we have:

R̂(h) =
1

m

m∑
i=1

Z
(h)
i

R(h) = E

[
1

m

m∑
i=1

Z
(h)
i

]

Since Z
(h)
i are i.i.d. Bernoulli random variables with mean R(h) and 0 ≤ Z

(h)
i ≤ 1, we can

apply the Chernoff-Hoeffding Bound. The Chernoff-Hoeffding Bound states that for any δ > 0,
the following inequality holds with probability at least 1− δ

|H| for each hypothesis h ∈ H:

P

 1

m

m∑
i=1

Z
(h)
i −R(h) ≥

√
log 2|H|

δ

2m

 ≤ δ

|H|

Applying the union bound over all hypotheses h ∈ H, we get:

P
S∼Dm

∃h ∈ H : R(hS) ≤ R̂(hS) +

√
log |H|+ log 2

δ

2m

 ≥ 1− δ

Thus, the learning bound for the finite hypothesis set case with inconsistencies is:

25

February 27, 2023 Statistical Machine Learning, Hanan Ather

R(hS) ≤ R̂(hS) +

√
log |H|+ log 2

δ

2m
, h ∈ H

This implies that the generalization error is proportional to the square root of the ratio of the
bitsize of H to the sample size m and it drops as 1/

√
m.

This theorem indicates that any finite concept class can also be PAC learned by inconsistent
algorithm but with possibly a lower learning rate.

26

27

§13 March 1, 2023

27

March 6, 2023 Statistical Machine Learning, Hanan Ather

§14 March 6, 2023

§14.1 Rademacher Complexity

Definition 14.1 (Empirical Rademacher complexity) Let G be a family of functions mapping
from Z → [a, b] and S = (z1, . . . , z1) a fixed sample of size m with elements in Z. Then, the
empirical Rademacher complexity of G with respect to the sample S is defined as:

R̂S(G) = Eσ

[
sup
g∈G

1

m

m∑
i=1

σig(zi)

]

where σ = (σ1, . . . , σm)T , with σ′
is independent uniform random variables taking values

{-1,+1 }. The random variables σi are called Rademacher variables.a

aNote that we are implicitly assuming that the supremum over the family G in the definition is measurable.

If we let gS denote the vector of values taken by function g over the sample S : gS =
(g(z1), . . . , g(zm))T . Then, the empirical Rademacher complexity can be written as

R̂S(G) = Eσ

[
sup
g∈G

σ · gS

m

]
• the inner product σ · gS measures the correlation of gS with the vector of noise σ

• the supremum sup
g∈G

σ·gS

m is a measure of how well the function class G correlates with σ over

sample S.

The richer or more complex the family of class of functions G the better it correlates wit random
noise, on overage. Note that we are implicitly assuming that the supremum over the family G in
the definition is measurable.

Definition 14.2 (Rademacher complexity) Let D denote the distribution according to which
samples are drawn. For any integer m ≥ 1, the Rademacher complexity of SG is the
expectation of the empirical Rademacher complexity over all samples of size m drawn
according to D:

Rm(G) = ES∼Dm [R̂S(G)]

Now that we have the definitions down, we can derive/proof the generalization bounds based on
Rademacher complexity.

Theorem 14.3 — Let G be a family of functions mapping from Z → [a, b]. Then for any
δ > 0, with probability at least 1− δ over the draw of an i.i.d. sample S of size m, each of
the following holds for all g ∈ G:

E[g(z)] ≤ 1

m

m∑
i=1

g(zi) + 2Rm(G) +

√
log 1

δ

2m
(22)

E[g(z)] ≤ 1

m

m∑
i=1

g(zi) + 2R̂S(G) + 3

√
log 2

δ

2m
(23)

28

29

Proof.

ES [Φ(S)] = E
S

[
sup
g∈G

(E[g]− ÊS(g))

]
= E

S

[
sup
g∈G

ES′ [ÊS′ [g]− ÊS(g)]

]
≤ E

S,S′

[
sup
g∈G

(ÊS′(g)− ÊS(g))

]
= E

S,S′

[
sup
g∈G

1

m

m∑
i=1

(g(z′i)− g(zi))

]

= E
S,S′,σ

[
sup
g∈G

1

m

m∑
i=1

σi(g(z
′
i)− g(zi))

]

≤ E
S′,σ

[
sup
g∈G

1

m

m∑
i=1

σi(g(z
′
i))

]
+ E

S′,σ

[
sup
g∈G

1

m

m∑
i=1

−σi(g(z
′
i))

]

= 2 E
S′,σ

[
sup
g∈G

1

m

m∑
i=1

σi(g(z
′
i))

]
= 2Rm(G)

Note that above we are using the sub-addivity property of the supremum:

sup(U + V) ≤ sup(A) + sup(B)

.

Lemma 14.4 — Let H be a family of functions taking values in {+1,−1} and let G be the
family of loss functions associate to H for the zero-loss:

G = {(x, y) 7→ 1h(x)̸=y : h ∈ H}

For any sample S = ((x1, y1), . . . , (xm, ym)) in X × {+1,−1}, the empirical Rademacher
complexity can be written as a:

R̂S(G) = E
σ

[
sup
h∈H

1

m

m∑
i=1

σi1h(xi) ̸=yi

]

= E
σ

[
sup
h∈H

1

m

m∑
i=1

σi
1− yih(xi)

2

]

=
1

2
E
σ

[
sup
h∈H

1

m

m∑
i=1

−σiyih(xi)

]

=
1

2
E
σ

[
sup
h∈H

1

m

m∑
i=1

σih(xi) =

]
=

1

2
R̂Sx

(H)

aWe use the fact that 1h(xi)̸=yi
=

1−yih(xi)
2

and the fact that for a fixed yi ∈ {+1,−1}, σI and −yiσi are
distributed the same way

We can leverage the above results of Empirical and Expected Rademacher complexity to derive
generalization bounds for simple binary classifiers on the hypothesis set H:

29

March 6, 2023 Statistical Machine Learning, Hanan Ather

Theorem 14.5 (Rademacher Complexity bounds for Binary Classifier) — Let H be a family
of functions taking values {+1,−1} and let D be the distribution over the input space X .
Then for any δ > 0, with probability at least 1− δ over a sample S of size m drawn form D,
the two following inequalities hold:

R(h) ≤ R̂(h) +Rm(H) +

√
log 1

δ

2m

R(h) ≤ R̂(h) +RS(H) + 3

√
log 2

δ

2m

Proof. These results follow from the previous theorems.

Notice that these bounds depend of the data, since the empirical Rademacher complexity R̂S(H)
is a function of a specific sample drawn S. These bounds are really only useful if we can actually
compute RS(H). We can do this by using the fact that σi and −σi are distributed the exact
same way.

R̂S(H) = E
σ

[
sup
h∈H

1

m

m∑
i=1

−σih(xi)

]
= −E

σ

[
inf
h∈H

1

m

m∑
i=1

σih(xi)

]
Now computing inf 1

m

∑m
i=1 σih(xi) equivalent to empirical risk minimization, and this can be

computational hard for certain hypothesis classes. This is why we need other tools such as growth
functions, which are combinatorial measures which are easier to compute.

30

31

§15 March 8, 2023

§15.1 Concentration Inequalities

Concentration inequalities are a set of results in probability theory and learning theory that
provide bounds on the deviation of a random variable from its expected value or some other
reference value. These inequalities are particularly useful in understanding the behavior of random
variables in large samples or high-dimensional settings, as they quantify the probability that the
random variable deviates from its expected value by a certain amount. Concentration inequalities,
such as Hoeffding’s inequality, Chernoff bounds, and McDiarmid’s inequality, play
a crucial role in learning theory, as they help derive generalization bounds and performance
guarantees for machine learning algorithms. By bounding the difference between the empirical
performance of a model on a finite training set and its expected performance on unseen data,
concentration inequalities enable researchers to assess the reliability and robustness of learning
algorithms, as well as to guide the development of more efficient and effective methods. Our
objective in many learning theory problems is to show that R(f) is close to R̂(f), where:

R̂ =
1

m

m∑
i=1

L(f(Xi), Yi)

is the empirical risk for a function f ∈ F . We refer to the empirical minimizing function as

f∗ = arg min
f∈F

R̂(f)

As we can note above the empirical risk is an average over the sample S, we can also define

R(f) = ES∼D[L(f(Xi), Yi)]

as the expected risk or also referred to as the generalization error.

§15.2 Probabilistic inequalities

Two very basic inequalties from probability theory are:

• Markov’s inequality: For X ≥ 0, P(X > t) ≤ E(X)
t

• Chebyshev’s inequality: P(|X − EX| ≥ t) ≤ Var(X)
t2

The advantages of the two above inequalities is they are very general, however, we want learning
bounds which give us stronger convergence. To achieve this we have to use the Hoeffding’s
Inequality.
Lets consider the sum of independent random variables, X1, . . . , Xn, Sn =

∑n
i=1 Xi. Then for all

s > 0, we have

P(SnESn ≥ t) = P(exp{s(Sn − ESn)} ≥ est)

≤ e−stEes(Sn−EXi)

= e−st
n∏

i=1

Ees(Xi−EXi)

The first inequality follows from Markov’s inequality and the second equality follows from the
independence of Xi. Note that Ees(Xi−EXi) is the Moment generating function of Xi − EXi

Proposition 15.1 (Hoeffing’s identity). For a random variable X with EX = 0 and a ≤ X ≤ b,
for s > 0, we have

EesX ≤ es
2(b−a)2/8

Proof. We use the fact that esx is a convex function of x and that it is uniformly bounded.

31

March 8, 2023 Statistical Machine Learning, Hanan Ather

Hoeffding’s inequality is a concentration inequality that allows us to bound the probability
that the sum or average of independent, identically distributed (i.i.d.) random variables deviates
significantly from their expected sum or average. In other words, it provides an upper bound
on the probability that the empirical mean of a set of i.i.d. random variables is far from their
true mean. This bound depends on the range of the random variables and the desired level of
precision.

Theorem 15.2 (Hoeffding’s Inequality) — For a bounded random variables Xi ∈ [ai, bi],
where X1, . . . Xn are independent, then

P(SnESn ≥ t) ≤ exp

(
−2t2∑n

i=1(bi − ai)2

)
and,

P(ESn − Sn ≥ t) ≤ exp

(
−2t2∑n

i=1(bi − ai)2

)
a

aThe tails of the error term are starting to look more Gaussian, since they are decaying exponentially at
the rate of t2

Hoeffding’s inequality is particularly useful in the context of machine learning, where we often
work with finite samples and want to understand how well the sample statistics (e.g., the empirical
error rate) generalize to the entire population. By providing a bound on the deviation of the
empirical mean from the true mean, Hoeffding’s inequality helps us quantify the uncertainty of
our estimates and assess the reliability of our learning algorithms.

§15.3 McDiarmid’s Inequality

• Hoeffding’s inequality: Applies to the sum or average of independent, identically dis-
tributed (i.i.d.) random variables that are bounded. It provides an upper bound on the
probability that their empirical mean deviates significantly from the true mean. This
inequality is particularly useful in machine learning for understanding the generalization
performance of algorithms.

• Chernoff bounds: A more general form of concentration inequality that applies to the
sum of i.i.d. random variables, which can be derived using the moment-generating functions
of the random variables. Chernoff bounds can be tighter than Hoeffding’s inequality in some
cases, especially for rare events or when the random variables have a specific distribution
(e.g., Bernoulli or Poisson).

• McDiarmid’s inequality: Applies to the case where a function of multiple independent
random variables has bounded differences, meaning that changing a single random variable
can only cause a limited change in the function value. McDiarmid’s inequality provides
an upper bound on the probability that the function value deviates significantly from
its expected value. This inequality is useful for understanding the stability of learning
algorithms and randomized algorithms.

• Markov’s inequality: A basic concentration inequality that provides an upper bound
on the probability that a non-negative random variable exceeds a certain multiple of its
expected value. This inequality is weaker than the others, but it has the advantage of
requiring minimal assumptions and being applicable to a wide range of random variables.

• Chebyshev’s inequality: A more specific concentration inequality that provides an upper
bound on the probability that a random variable with finite variance deviates significantly
from its expected value. Chebyshev’s inequality is more powerful than Markov’s inequality
when dealing with random variables with known variance, as it takes this information into
account.

32

33

Markov’s Chebyshev’s

Hoeffding’s

Chernoff bounds

McDiarmid’s
Variances

i.i.d. i.i.d. i.i.d.

Bounded diff.

Figure 1: This diagram illustrates Markov’s inequality as the most general one, with connections
to Chebyshev’s inequality (which adds knowledge of variances) and Hoeffding’s and
Chernoff bounds (which both require i.i.d. random variables). McDiarmid’s inequality
is connected to Chebyshev’s inequality and represents bounded differences instead of
variances.

§16 March 13, 2023

§16.1 VC Theory

The motivation behind the VC-dimension (Vapnik-Chervonenkis) lies in understanding the
generalization ability of learning algorithms, which refers to how well an algorithm performs on
unseen data. The VC-dimension helps to quantify the capacity or complexity of a hypothesis
class (a set of candidate models) and is crucial in providing bounds on the generalization error,
which is the difference between the error on the training data and the error on the entire data
distribution. This understanding helps in selecting appropriate models that can balance the
trade-off between fitting the training data well and generalizing to new data.

⋆ Model complexity and generalization: When developing a learning algorithm, one of the key challenges
is to strike a balance between fitting the training data well and being able to generalize to unseen data.
Models that are too simple may not capture the underlying structure of the data, leading to high bias and
underfitting. On the other hand, models that are too complex can fit the training data very well, but may
not generalize well to new data, leading to high variance and overfitting. The VC dimension provides a way
to quantify the complexity of a hypothesis class, which helps in understanding the generalization ability of
learning algorithms.

Hypothesis class and shattering: To define the VC-dimension, we need to introduce the
notion of a hypothesis class and its ability to shatter a set of data points. A hypothesis class is a
collection of candidate models (usually classifiers) that we consider when trying to learn from
data. A hypothesis class is said to shatter a set of data points if it can classify all possible label
configurations for those data points without any error.

Definition 16.1 (VC-dimension) TheVC-dimension of a hypothesis set H is the size of the
largest set that can be shattered by H:

V Cdim(H) = max{m :
∏
H

(m) = 2m}.

The VC dimension is defined as the largest number of data points that can be shattered by a
given hypothesis class. If a hypothesis class can shatter an arbitrarily large number of data
points, its VC dimension is said to be infinite. Intuitively, a higher VC dimension indicates a
more expressive hypothesis class with greater capacity to fit complex data.

33

March 13, 2023 Statistical Machine Learning, Hanan Ather

Theorem 16.2 (Representer Theorem) — Let H be a reproducing kernel Hilbert space
(RKHS) with kernel K : X × X → R. Let S = {(x1, y1), . . . , (xn, yn)} ⊂ X × R be a finite
training set, and let J : H → R be a strictly monotonically increasing function. Consider
the following optimization problem:

min
f∈H

{
RS(f) =

n∑
i=1

L(f(xi), yi) + J(∥f∥H)

}
,

where L : R × R → R is a loss function. If f∗ ∈ H is a minimizer of RS(f), then there
exist coefficients α1, . . . , αn ∈ R such that

f∗(x) =

n∑
i=1

αiK(xi, x), ∀x ∈ X .

Proof. Let f∗ ∈ H be a minimizer of RS(f). Define the function g ∈ H as

g(x) = f∗(x)−
n∑

i=1

αiK(xi, x), ∀x ∈ X .

Note that g(xi) = 0 for all i = 1, . . . , n, as the kernel K has the reproducing property. Now,
we define f0 ∈ H as

f0(x) =

n∑
i=1

αiK(xi, x), ∀x ∈ X .

We have

∥f∗∥2H = ∥g + f0∥2H = ∥g∥2H + 2⟨g, f0⟩H + ∥f0∥2H.

Since g(xi) = 0 for all i = 1, . . . , n, we have

⟨g, f0⟩H =

n∑
i=1

g(xi)αi = 0.

Therefore,

∥f∗∥2H = ∥g∥

34

35

§17 March 15, 2023

§17.1 VC dimension continued

Proof. Define X̃ = {x0, x1, . . . , xd−1} ⊂ X as a subset shattered by H. Given any ϵ > 0, we
select D such that it concentrates on X̃ and particularly on the point x0.
The probability distribution D assigns a high likelihood (1 − 8ϵ) to the point x0, with the

remaining probability equally distributed among the other points in X̃.
Assuming that the learning algorithm A makes no errors on x0, we consider the set S̃ as the

subset of a sample S containing points from X̃ excluding x0. For a given sample S, if the number
of elements in S̃ is less than or equal to d−1

2 , we can establish a lower bound for the expected

generalization error over all labelings of X̃ that are consistent with H.
This expectation is split into two parts: one where the generalization error exceeds ϵ and

the other where it does not. The sum of probabilities for the first part is at least 8 times the
probability that RD(hS , g) is greater than or equal to ϵ.

Finally, we apply a multiplicative Chernoff bound to determine the probability that the sample
S has fewer than d−1

2 points from X̃. This leads to a bound on the probability of the generalization
error RD(hS , g) being at least ϵ, which is strictly greater than δ for δ < 0.01.

Proposition 17.1. Suppose α represents a random variable uniformly distributed over the set
{α−, α+}, where α− = 1

2 − ϵ and α+ = 1
2 + ϵ. Consider a collection of m ≥ 1 independent and

identically distributed random variables X1, . . . , Xm taking binary values. If these variables are
drawn from a distribution Dα characterized by PDα [X = 1] = α, and h maps an m-tuple from
Xm to {α−, α+}, then the ensuing relation is valid:

Eα

[
PS∼Dm

α
[h(S) ̸= α]

]
≥ Φ(2m/ϵ2, ϵ),

where Φ(m, ϵ) is defined as 1
4

(
1−

√
1− exp

(
− mϵ2

1−ϵ2

))
for all sample sizes m and any ϵ.

Proof. One could interpret the lemma in the context of an experiment involving two biased coins
with biases α− and α+. To deduce the tossed coin using a decision rule h(S) based on a sample
S drawn from either Dα− or Dα+ , the sample size m is required to be no less than Ω(1/ϵ2). The
detailed proof is outlined as an exercise.

Proposition 17.2. Let Z be a random variable taking values in [0, 1]. Then, for any γ ∈ [0, 1],

P[z > γ] ≥ E[Z]− γ

1− γ
> E[Z]− γ.

Proof. Since the values taken by Z are in [0, 1],

E[Z] =
∑
z≤γ

zP[Z = z] +
∑
z>γ

zP[Z = z]

≤
∑
z≤γ

γP[Z = z] +
∑
z>γ

P[Z = z]

= γP[Z ≤ γ] + P[Z > γ]

= γ(1− P[Z > γ]) + P[Z > γ]

= (1− γ)P[Z > γ] + γ,

which concludes the proof.

10

10Given that Z only adopts values within [0, 1], we can write the expected value of Z as the sum of the probabilities
of Z being less than or equal to γ and Z being above γ multiplied by their respective outcomes. This sum can
be simplified to γ times the probability of Z being not greater than γ plus the probability of Z being greater
than γ. Simplifying further, we obtain that the expectation is equal to γ plus (1− γ) times the probability of
Z surpassing γ.

35

March 15, 2023 Statistical Machine Learning, Hanan Ather

§17.2 Growth function

Definition 17.3 (Growth function) The growth function ΠH : N→ N for a hypothesis set H
is defined by:

ΠH(m) = max
x1,...,xm∈X

|{(h(x1), . . . , h(xm)) : h ∈ H}| ,

where m is a natural number, X is a domain set, and H is a set of functions mapping from
X to a set of labels (e.g., {−1,+1} for binary classification problems).

Unlike Rademacher complexity, this measure does not depend on the distribution; it is purely
combinatorial.

To relate it to Rademacher complexity, we use:

Theorem 17.4 (Massart’s lemma) — Let A ⊂ Rm be a finite set, with r = maxx∈A ∥x∥2,
then the following holds:

E

[
sup
x∈A

1

m

m∑
i=1

σixi

]
≤

r
√

2 log |A|
m

,

where σi are independent uniform random variables taking values in {−1,+1} and x1, . . . , xm

are the components of vector x.

Corollary 17.5

Let G be a family of functions taking values in {−1,+1}. Then the following holds:

R̂m(G) ≤
√

2 log |G(m)|
m

,

where R̂m(G) denotes the empirical Rademacher complexity of G on m samples.

Proof. Use A = G and note that the maximum norm of u is
√
m. So, we have:

R̂m(G) = ES

[
Eσ

[
sup
u∈G

1

m

m∑
i=1

σiui

]]
≤

√
2 log |G(m)|

m
.

This follows from Massart’s lemma, noting that the growth function |G(m)| bounds the cardinality
of A and thus controls the complexity of the hypothesis class G.

Corollary 17.6

Let G be a family of functions taking values in {−1,+1}. Then the following holds:

Rm(G) ≤
√

2 logΠG(m)

m
.

Proof. For a fixed sample S = (x1, . . . , xm), we denote by G|S the set of vectors of function values
(g(x1), . . . , g(xm))T where g is in G. Since g ∈ G takes values in {−1,+1}, the norm of these
vectors is bounded by

√
m. Applying Massart’s lemma:

Rm(G) = ES

[
Eσ

[
sup

u∈G|S

1

m

m∑
i=1

σiui

]]
≤ ES

[√
m

2 log |G|S |

]
.

36

37

By definition, |G|S | is bounded by the growth function, thus

Rm(G) ≤ ES

[√
m

2 logΠG(m)

]
=

√
2 logΠG(m)

m
.

which concludes the proof.

Corollary 17.7

Let H be a family of functions taking values in {−1,+1}. Then, for any δ > 0, with
probability at least 1− δ, for any h ∈ H,

R(h) ≤ R̂(h) +

√
2 logΠH(m)

m
+

√
log 1

δ

2m
.

Theorem 17.8 (Sauer’s Lemma) — Let H be a hypothesis set with VC-dimension d. Then,
for all m ∈ N, the following inequality holds:

ΠH(m) ≤
d∑

i=0

(
m

i

)
.

Proposition 17.9 (Lower Bound for a Realizable Case). Consider a hypothesis space H with
VC-dimension d > 1. For any sample size m ≥ 1 and any learning algorithm A, it is possible to
find a probability distribution D over the input space X and choose a specific target function g
from H such that the probability of the generalization error RD(hS , g) being greater than the
fraction d−1

32m is at least 0.01.

37

March 20, 2023 Statistical Machine Learning, Hanan Ather

§18 March 20, 2023

§18.1 Learning theoretic results

§18.2 Introducing reproducing kernels

Definition 18.1 (Kernels) A function K : X × X → R is called a kernel over X . The idea is
to define a kernel K such that for any two points x, x′ ∈ X , K(x, x′) be equal to an inner
product of vectors Φ(x) and Φ(y):

∀x, x′ ∈ X , K(x, x′) = ⟨Φ(x),Φ(x′)⟩.

Theorem 18.2 (Mercer’s condition) — Let X ⊆ RN be a compact set and let K : X ×X → R
be a continuous and symmetric function. Then, K admits a uniformly convergent expansion
of the form

K(x, x′) =

∞∑
n=0

anϕn(x)ϕn(x
′),

with an > 0 if and only if for any square integrable function c (c ∈ L2(X)), the following
condition holds: ∫

X

∫
X
c(x)c(x′)K(x, x′) dx dx′ ≥ 0.

Definition 18.3 (Positive definite symmetric kernels) A kernel K : X × X → R is said
to be positive definite symmetric (PDS) if for any {x1, . . . , xm} ⊆ X , the matrix K =
[K(xi, xj)]i,j ∈ Rm×m is symmetric positive semidefinite (SPSD).

The matrix K is SPSD if it is symmetric and one of the following two equivalent conditions
holds:

• the eigenvalues of K are non-negative;

• for any column vector c = (c1, . . . , cm)⊤ ∈ Rm×1,

c⊤Kc =

n∑
i,j=1

cicjK(xi, xj) ≥ 0.

For a sample S = (x1, . . . , xm), K = [K(xi, xj)]i,j is called the kernel matrix or the Gram
matrix associated to K and the sample S. 11

Example 18.4 (Polynomial kernels). For any constant c > 0, a polynomial kernel of degree
d ∈ N is the kernel K defined over RN by:

∀x, x′ ∈ RN , K(x, x′) = (x · x′ + c)d.

Polynomial kernels map the input space to a higher-dimensional space of dimension
(
N+d
d

)
. As an

example, for an input space of dimension N = 2, a second-degree polynomial (d = 2) corresponds

11In the terminology, the kernel matrix associated to a positive definite kernel is positive semidefinite. This is the
correct mathematical terminology. However, in the context of machine learning, some authors have chosen to
use instead the term positive definite kernel to imply a positive definite kernel matrix or used new terms such
as positive semidefinite kernel.

38

39

to the following inner product in dimension 6:

∀x, x′ ∈ R2, K(x, x′) = (x1x
′
1 + x2x

′
2 + c)

2
=

x2
1

x2
2√

2x1x2√
2cx1√
2cx2

c

⊤

x′2
1

x′2
2√

2x′
1x

′
2√

2cx′
1√

2cx′
2

c

 .

Thus, the features corresponding to a second-degree polynomial are the original features (x1 and x2),
as well as products of these features, and the constant feature. More generally, the features
associated to a polynomial kernel of degree d are all the monomials of degree at most d based on
the original features. The explicit expression of polynomial kernels as inner products, as in the
above, proves directly that they are PDS kernels.

Lemma 18.5 (Cauchy-Schwarz inequality for PDS kernels) — Let K be a PDS kernel. Then,
for any x, x′ ∈ X ,

K(x, x′)2 ≤ K(x, x)K(x′, x′).

Proof. Consider the matrix K =

(
K(x, x) K(x, x′)
K(x′, x) K(x′, x′)

)
. By definition, if K is PDS, then K is

SPSD for all x, x′ ∈ X . In particular, the product of the eigenvalues of K, det(K), must be
non-negative, thus, using K(x′, x) = K(x, x′), we have

det(K) = K(x, x)K(x′, x′)−K(x, x′)2 ≥ 0,

which concludes the proof.

Theorem 18.6 (Reproducing kernel Hilbert space (RKHS)) — Let K : X ×X → R be a PDS
kernel. Then, there exists a Hilbert space H and a mapping Φ from X to H such that:

∀x, x′ ∈ X , K(x, x′) = ⟨Φ(x),Φ(x′)⟩.

Furthermore, H has the following property known as the reproducing property:

∀h ∈ H,∀x ∈ X , h(x) = ⟨h,K(x, ·)⟩.

H is called a reproducing kernel Hilbert space (RKHS) associated to K.

Proof. For any x ∈ X , define Φ(x) : X → R as follows:

∀x′ ∈ X , Φ(x)(x′) = K(x, x′).

We define H0 as the set of finite linear combinations of such functions Φ(x):

H0 =

{∑
i∈I

aiΦ(xi) : ai ∈ R, xi ∈ X , |I| <∞

}
.

Now, we introduce an operation ⟨·, ·⟩ on H0 ×H0 defined for all f, g ∈ H0 with f =
∑

i∈I aiΦ(xi)
and g =

∑
j∈J bjΦ(x

′
j) by

⟨f, g⟩ =
∑

i∈I,j∈J

aibjK(xi, x
′
j).

By definition, ⟨·, ·⟩ is symmetric. Since K is PDS, we have

⟨f, f⟩ =
∑
i,j∈I

aiajK(xi, xj) ≥ 0.

39

March 20, 2023 Statistical Machine Learning, Hanan Ather

Thus, ⟨·, ·⟩ is positive semidefinite bilinear form.

To any kernel K, we can associate a normalized kernel K ′ defined by

K ′(x, x′) =

0 if (K(x, x) = 0) ∨ (K(x′, x′) = 0),
K(x,x′)√

K(x,x)K(x′,x′)
otherwise.

By definition, for a normalized kernel K ′, K ′(x, x) = 1 for all x ∈ X such that K(x, x) ̸= 0.
An example of normalized kernel is the Gaussian kernel with parameter σ > 0, which is the

normalized kernel associated to K ′: (x, x′) 7→ exp
(
−∥x′−x∥2

2σ2

)
:

∀x, x′ ∈ RN ,
K ′(x, x′)√

K ′(x, x)K ′(x′, x′)
=

exp
(
−∥x′−x∥2

2σ2

)
exp

(
−∥x∥2

2σ2

)
exp

(
−∥x′∥2

2σ2

) = exp

(
−∥x

′ − x∥2

2σ2

)
.

Lemma 18.7 (Normalized PDS kernels) — Let K be a PDS kernel. Then, the normalized
kernel K ′ associated to K is PDS.

Proof. Let {x1, . . . , xm} ⊆ X and let c be an arbitrary vector in Rm. We will show that the sum∑m
i,j=1 cicjK

′(xi, xj) is non-negative. By lemma 6.7, if K(xi, xi) = 0 then K(xi, xj) = 0 and
thus K ′(xi, xj) = 0 for all j ∈ [m]. Thus, we can assume that K(xi, xi) > 0 for all i ∈ [m]. Then,
the sum can be rewritten as follows:

m∑
i,j=1

cicjK(xi, xj)√
K(xi, xi)K(xj , xj)

=

m∑
i,j=1

cicj
⟨Φ(xi),Φ(xj)⟩

∥Φ(xi)∥H∥Φ(xj)∥H
=

∥∥∥∥∥
m∑
i=1

ciΦ(xi)

∥Φ(xi)∥H

∥∥∥∥∥
2

H

≥ 0,

where Φ is a feature mapping associated to K, which exists by theorem 6.8.

40

41

§19 March 22, 2023

§19.1 Functional Analysis Background

Definition 19.1 A function space F is a space whose elements are functions, e.g., f : Rd → R.

Definition 19.2 An inner product is a function ⟨·, ·⟩ : F ×F → R that satisfies the following
properties for every f, g ∈ F and α ∈ R:

1. Symmetric: ⟨f, g⟩ = ⟨g, f⟩.

2. Linear: ⟨r1f1 + r2f2, g⟩ = r1⟨f1, g⟩+ r2⟨f2, g⟩ for any scalars r1, r2 ∈ R.

3. Positive-definite: ⟨f, f⟩ ≥ 0 for all f ∈ F and ⟨f, f⟩ = 0 if and only if f = 0.

Definition 19.3 A norm is a nonnegative function ∥ · ∥ : F → R such that for all f, g ∈ F
and α ∈ R:

1. ∥f∥ ≥ 0 and ∥f∥ = 0 if f = 0; the zero function.

2. Triangle inequality: ∥f + g∥ ≤ ∥f∥+ ∥g∥.

3. Absolutely homogeneous: ∥αf∥ = |α|∥f∥.

A norm can be defined via an inner product as ∥f∥ =
√
⟨f, f⟩.

§19.2 Reproducing kernel Hilbert spaces (RKHS)

Definition 19.4 A kernel K : X × X → R is a positive definite kernel on X if for every
N ∈ N and for all x1, . . . , xN ∈ X , and for any coefficients a1, . . . , aN ∈ R, the sum∑N

i,j=1 aiajK(xi, xj) ≥ 0. This is known as the Mercer condition. If K is also symmetric,
that is ∀x, x′ ∈ X ,K(x, x′) = K(x′, x) then we call K a reproducing kernel. Some people
call it a PDS kernel.

If K is a reproducing kernel, then the quantity
√
K(x, x) acts like a norm of x. The Cauchy-

Schwarz inequality also holds: K(x, x′) ≤
√
K(x, x)K(x′, x′). We can normalize a reproducing

kernel K by defining K̃(x, x′) = K(x,x′)√
K(x,x)K(x′,x′)

. Then K̃ is also a reproducing kernel.

Definition 19.5 A Hilbert space H consisting of real-valued functions on X is a reproducing
kernel Hilbert space (RKHS) if ∀x ∈ X , the evaluation functional Evx : H → R defined by
Evx(h) := h(x) is continuous. In Hilbert spaces, continuity of a linear functional is equivalent
to boundedness, so we can write ∀x ∈ X ,∃Cx > 0 such that ∀h ∈ H, |Evx(h)| ≤ Cx∥h∥H .

Theorem 19.6 — If H is a RKHS of real-valued functions on X , then for each x ∈ X there
exists an element Kx ∈ H such that ∀h ∈ H,Evx(h) = ⟨h,Kx⟩H . The map Φ : X → H that
sends x 7→ Kx is called the feature map associated to H.

The normalized kernel K̃(x, x′) is the cosine of the angle between Φ(x) and Φ(x′) in the Hilbert
space HK .

Theorem 19.7 — Let H be a RKHS of real-valued functions on X , then the kernel
K : X ×X → R defined by K(x, x′) := ⟨Kx,Kx′⟩H = ⟨Φ(x),Φ(x′)⟩H is a reproducing kernel,
called the reproducing kernel of H. We can view K as a manifestation in X of the inner
product on H.

41

March 22, 2023 Statistical Machine Learning, Hanan Ather

Theorem 19.8 — Let K be a reproducing kernel on X . Consider linear combinations∑N
i=1 aiKxi

with ai ∈ R and xi ∈ X and define an inner product on these ⟨Kxi
,Kxj

⟩ :=
K(xi, xj). Then this is a pre-Hilbert space. Its completion is a Hilbert space that happens
to be RKHS; we denote it HK .

Common Kernels:

• Linear kernel: K(x, x′) = ⟨x, x′⟩

• Gaussian kernel: K(x, x′) = exp
(
−∥x−x′∥2

2σ2

)
, where σ > 0 is the width of the kernel.

• Polynomial kernel: K(x, x′) = (⟨x, x′⟩+ 1)d, where d ∈ N is the degree of the polynomial.

We illustrate how regularization controls complexity through a simple linear case. Our function
space is 1-dimensional lines through the origin with a linear kernel:

f(x) = w · x and K(x, xi) = ⟨x, xi⟩

giving an RKHS norm of

∥f∥2H = ⟨f, f⟩H = ⟨Kw,Kw⟩H = K(w,w) = ∥w∥2

so that our measure of complexity is the slope of the line. We want to separate two classes using
lines and see how the magnitude of the slope corresponds to a measure of complexity.

A classification problem can be thought of as ”harder” when the distinctions between the two
classes are less pronounced. Having a norm that increases with slope is a good choice in this
case: by penalizing lines with high slope, we only use complex solutions to problems if doing so is
necessary to reduce the training error.
The RKHS norm associated with the linear kernel induces a metric on the space of functions

that directly corresponds to the Euclidean norm of the weight vector in the primal space. This
norm quantifies the complexity of the function in terms of its deviation from zero, which in the
context of linear functions, is directly related to the slope or rate of change.

42

43

§20 March 27, 2023

§20.1 Online learning

Online learning is a method within machine learning where the model is trained incrementally by
feeding it data samples sequentially, one at a time. This approach is particularly useful when
dealing with large datasets that cannot be processed all at once due to memory constraints, or
when the data is being collected in a real-time fashion.

20.1.1 Mathematical Formulation

In online learning, we consider a model characterized by parameters θ. When a new data point
(xt, yt) arrives, the model parameters are updated using a learning rule derived from an objective
function L(θ;xt, yt), typically representing the loss of the model’s prediction on the new data
point.
The update rule is generally of the form:

θt+1 = θt − ηt∇θL(θt;xt, yt),

where θt are the parameters at time step t, ηt is the learning rate, and ∇θL(θt;xt, yt) is the
gradient of the loss with respect to the parameters.

20.1.2 Advantages of Online Learning

Online learning algorithms offer several advantages:

• Memory Efficiency: They do not require loading the entire dataset into memory.

• Adaptivity: They can adapt to changes in the underlying data distribution over time.

• Real-time Processing: They are suitable for applications that require real-time processing
and decision-making.

Some common online learning algorithms include:

• Online Gradient Descent: Used for regression and classification tasks.

• Stochastic Gradient Descent (SGD): A variant of online gradient descent where the
gradient is estimated using a single sample.

• Perceptron Algorithm: One of the earliest online learning algorithms used for binary
classification.

§20.2 Introduction to the perceptron

The Perceptron algorithm represents a foundational piece in the evolution of machine learning
techniques. It operates as an online algorithm for linear classification, developing a decision-making
model that is iteratively refined using individual data instances.

This method constructs a weight vectorwt ∈ RN , which delineates a decision boundary. Starting
from an initial guess w0, the algorithm proceeds through successive rounds t ∈ {1, 2, . . . , T},
making predictions about the classification of new data points xt based on the current weight
vector. If a discrepancy arises between the predicted and actual labels, the algorithm adapts by
adjusting wt in the direction proportional to xt scaled by the label yt and a learning rate η, a
process grounded in the principles of the gradient descent method.

The adjustment made to the weight vector is informed by the sign of the dot product ytwt · xt,
which signifies whether the point xt has been correctly classified. Specifically, the weight vector
is modified to enhance the alignment of wt with the input vector xt corresponding to the correct
classification.
The update rule can be formally expressed as:

wt+1 = wt + ηytxt if yt(wt · xt) ≤ 0; otherwise, wt+1 = wt.

43

March 27, 2023 Statistical Machine Learning, Hanan Ather

This iterative refinement is designed to reinforce the correct linear separations imposed by
the Perceptron, thereby iteratively reducing the classification error on the training set. The
Perceptron’s updates cease when it reaches a state where all points are correctly classified,
assuming the data is linearly separable.

44

45

§21 March 29, 2023

§21.1 Perceptron Algorithm

1. Initialize the weight vector w and bias b with zeros or small random values.

2. Set the learning rate η > 0. The learning rate determines the step size during the weight
update process.

3. Repeat the following steps until the stopping criterion is met (for example, a predefined
number of iterations or a minimum error rate):

a) Select a training example (xi, yi) from the dataset, where xi is the feature vector and
yi ∈ {−1,+1} is the corresponding label.

b) Compute the output of the perceptron for the selected example: ŷi = sign(wTxi + b).

c) Update the weight vector and bias if the perceptron made an incorrect prediction:

{
w ← w + ηyixi if ŷi ̸= yi

b← b+ ηyi if ŷi ̸= yi

Perceptron Model:

x1

x2

...
xn

 Weights−−−−−→

w1

w2

...
wn

 Dot Product−−−−−−−−→ wTx
Add Bias−−−−−−→ wTx+ b

Activation Function−−−−−−−−−−−−→ sign(wTx+ b)

Pros:

• Efficiency : Due to its simplicity, the perceptron algorithm offers computational efficiency,
allowing it to manage large datasets relatively quickly.

• Adaptive learning : The algorithm supports adaptive learning by processing and updating the
model with one training example at a time, making it suitable for scenarios with continuous
data arrival that requires model adaptation.

• Convergence guarantee: If the dataset is linearly separable, the perceptron algorithm will
converge to a solution in a finite number of iterations.

Cons:

• Linear separability constraint : The perceptron algorithm can solely learn linear decision
boundaries, and for non-linearly separable problems, it will not converge to an accurate
solution.

• Lack of probabilistic interpretation: The perceptron algorithm does not offer an interpretation
of the output or class membership probabilities in a probabilistic sense, unlike some other
classifiers (e.g., logistic regression).

§21.2 Single-Layer Neural Networks

A neural network takes an input vector of p variables (X1, . . . , Xp) build a non-linear function
f(X) to predict the response Y . The features, X1, . . . , Xp, in the terminology of neural networks,
make up the input layer. Each of the inputs from the input layer feeds into each of the K hidden
units.

45

March 29, 2023 Statistical Machine Learning, Hanan Ather

§21.3 Multi-Layer Neural Networks

§21.4 Functions

Sigmoid:

σ(x) =
1

1 + e−x

Hyperbolic Tangent (tanh):

tanh(x) =
ex − e−x

ex + e−x

Rectified Linear Unit (ReLU):

ReLU(x) =

{
0, if x < 0,

x, if x ≥ 0.

−2 −1 1 2

−1

1

2

x

f(x)ReLU(x)

tanh(x)

Leaky Rectified Linear Unit (Leaky ReLU):

Leaky ReLU(x, α) =

{
αx, if x < 0,

x, if x ≥ 0.

Exponential Linear Unit (ELU):

ELU(x, α) =

{
α(ex − 1), if x < 0,

x, if x ≥ 0.

Softmax:

Softmax(x)i =
exi∑K
j=1 e

xj

, for i = 1, . . . ,K

46

47

§22 April 3, 2023

§22.1 Optimization

We can reduce the task of a learning a model for supervised learning problem to solving an
optimization problem we take the form of

θ∗ = arg minθg(θ),

where θ is a parameter and g is combined average loss over all training examples and a regularization
penalty.
Derivative free optimzaiton. Derivative-free optimization refers to a class of optimization
methods that do not rely on gradient information (i.e., derivatives) to find the optimal solution.
These methods are particularly useful when dealing with problems where the objective function is
noisy, discontinuous, non-differentiable, or when its derivatives are unavailable or computationally
expensive to compute. These methods explore the search space using only function evaluations,
without requiring information about the function’s gradient or Hessian.

§22.2 Gradient descent

First order methods. By making additional assumptions about g, we can improve the efficiency
of optimization. By restricting ourselves to only using class of differentiable functions, we can
compute gradients ∇θg via backpropagation.

⋆ The gradient is simply a vector of partial derivatives, that gives us the slope of g along every dimension of
θ. a

aThe gradient allows construct first order approximation Taylor expansion of g, hence “first-order method”

Since we want to minimize g, we can iterative improve θ by adding to it a small amount of
negative gradient direction. This is the motivation behind the gradient descent algorithm:

1. evaluates the gradient via backpropagation

2. updates the parameters by taking a small step in the direciton of negative gradient

§22.3 Batch gradient descent

§22.4 Mini-batch gradient descent

§22.5 Stochasitc gradient descent

The datasets we use in practice can be very large, so we can only estimate the gradient using
small mini-batch examples (around 100 exmples). This results in perform many approximate
updates instead of fewer exact updates.

Algorithm 1 Stochastic Gradient descent

Require: a starting point θ ∈ domain(g)
Ensure: a step size ε ∈ R∗

Repeat:

(i) Sample a minibatch of m samples {(x1, y1), . . . , (xm, ym)} from training data

(ii) Estimate the gradient ∇θg(θ) ≈ ∇θ[
1
m

∑m
i=1 L(fθ(xi), yi) +Rθ(fθ)] with backpropagation.

(iii) Compute the update direction: ∆θ ← −ε∇θg(θ)

(iv) Perform a parameter update: θ ← θ +∆θ

until convergence.

The learning rate also called the step size ε, is a crucial parameter in SGD. If the value of ε is
too high the algorithm may not converge, if its set too low, it will take too long to converge.

47

April 3, 2023 Statistical Machine Learning, Hanan Ather

§22.6 Advanced optimization techniques

By modifying the steps in the above algorithm, we can obtain faster convergence. Themomentum
update, is designed to concourge progress along small but consistent directions of the gradient. Let
g = ∇θg(θ) for the gradient vector, the update ∆θ is computed first by updating an intermediate
variable v := αv + g, it is initialized first at zero. Then we compute the update as ∆θ := −εv.
Why does this make sense? Note that v contains an exponentially-decaying sum of previous
gradient directions. 12

1. Autograd: Autograd update uses an intermediate variable r := r + g ⊗ g of the squared
sum of gradients. (⊗ is elementwise multiplication). The update is modulated as follows:
δθ := − ε

δ+
√
r
⊗ g

2. RMSProp (Root Mean Square Propagation): RMSProp maintains a moving average
of the squared gradients and divides the current gradient by the square root of this moving
average, effectively normalizing the gradient before applying the update.

3. Adam (Adaptive Moment Estimation): Adam is another adaptive learning rate
optimization algorithm that combines the ideas of RMSProp and momentum. Like RMSProp,
Adam maintains a moving average of the squared gradients to adjust the learning rate
for each parameter. Additionally, Adam also maintains a moving average of the gradients
themselves, similar to the momentum method. By combining these two approaches, Adam
provides a more stable and efficient optimization process, often leading to faster convergence
and improved performance in training neural networks.

12This method of updat ehas a close relationship to physics, where the gradient is interpreted as force F on a
particle with position θ.

48

49

§23 April 5, 2023

§23.1 Boosting

Definition 23.1 (Weak learning) A concept class C is said to be weakly PAC-learnable if
there exists an algorithm A, γ > 0, and a polynomial function poly(·, ·) such that for any
δ > 0, for all distributions D on X and for any target concept c ∈ C, the following holds.

AdaBoost Algorithm

Given a set S = {(x1, y1), . . . , (xm, ym)}:

1. Initialize D1(i) =
1
m for all i.

2. For t = 1 to T do:

a) Train base classifier ht in H with small error ϵt = Pi∼Dt [ht(xi) ̸= yi].

b) Choose αt =
1
2 log

(
1−ϵt
ϵt

)
.

c) Compute normalization factor Zt = 2
√
ϵt(1− ϵt).

d) Update distribution for i = 1 to m:

Dt+1(i)←
Dt(i) exp(−αtyiht(xi))

Zt
.

3. Output the final hypothesis:

f ←
T∑

t=1

αtht.

§23.2 AdaBost

49

	January 9, 2023
	Introduction
	Supervised learning
	Empirical Risk Minimization
	Manifold learning

	January 11, 2023
	OLS as ERM
	Mathematical formalization of linear regression
	Linear Algebra facts
	Column Perspective
	Spectral decomposition

	January 16, 2023
	Projection Prospective of OLS
	Occam's razor approach
	Regularized Least Square
	Recursive Least Squares

	January 18, 2022
	Linear Learning Algorithms
	Learning Algorithm
	Bayes Optimal
	Bias–variance tradeoff

	January 23, 2023
	Linear Discriminant Analysis

	January 25, 2023
	LDA continued
	PCA

	January 30, 2023
	Loss functions for classification

	February 1, 2023
	Support Vector Machines
	Non-separable Case
	Primal optimization problem

	February 6, 2023
	Lagrange Multipliers
	Karush-Kuhn-Tucker (KKT) theorem

	February 8, 2023
	Learning Theory
	Probably Approximately Correct (PAC) Learning

	February 15, 2023
	February 27, 2023
	March 1, 2023
	March 6, 2023
	Rademacher Complexity

	March 8, 2023
	Concentration Inequalities
	Probabilistic inequalities
	McDiarmid’s Inequality

	March 13, 2023
	VC Theory

	March 15, 2023
	VC dimension continued
	Growth function

	March 20, 2023
	Learning theoretic results
	Introducing reproducing kernels

	March 22, 2023
	Functional Analysis Background
	Reproducing kernel Hilbert spaces (RKHS)

	March 27, 2023
	Online learning
	Mathematical Formulation
	Advantages of Online Learning

	Introduction to the perceptron

	March 29, 2023
	Perceptron Algorithm
	Single-Layer Neural Networks
	Multi-Layer Neural Networks
	Functions

	April 3, 2023
	Optimization
	Gradient descent
	Batch gradient descent
	Mini-batch gradient descent
	Stochasitc gradient descent
	Advanced optimization techniques

	April 5, 2023
	Boosting
	AdaBost

